Skip to main content
Log in

Intersecting families in \(\left( {\begin{array}{c}{[m]}\\ \ell \end{array}}\right) \cup \left( {\begin{array}{c}{[n]}\\ k\end{array}}\right) \)

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Let \(m,n,\ell \) and k be positive integers with \(\ell \ne k\), \(n>2k\), \(m<2\ell \) and \(n=\max \{m,n\}\ge \ell +k\). If \(\mathcal {F}\) is an intersecting family in \(\left( {\begin{array}{c}[m]\\ \ell \end{array}}\right) \cup \left( {\begin{array}{c}[n]\\ k\end{array}}\right) \), then

$$\begin{aligned} |\mathcal {F}|\le \max \left\{ \left( {\begin{array}{c}m\\ \ell \end{array}}\right) , \left( {\begin{array}{c}m-1\\ \ell -1\end{array}}\right) +\left( {\begin{array}{c}n-1\\ k-1\end{array}}\right) \right\} . \end{aligned}$$

Unless \(n=\ell +k\ge m\), equality holds if and only if \(\left( {\begin{array}{c}m-1\\ \ell \end{array}}\right) \ge \left( {\begin{array}{c}n-1\\ k-1\end{array}}\right) \) and \(\mathcal {F}=\left( {\begin{array}{c}[m]\\ \ell \end{array}}\right) \) or \(\left( {\begin{array}{c}m-1\\ \ell \end{array}}\right) \le \left( {\begin{array}{c}n-1\\ k-1\end{array}}\right) \) and \(\mathcal {F}\) consists of all members of \(\left( {\begin{array}{c}[m]\\ \ell \end{array}}\right) \cup \left( {\begin{array}{c}[n]\\ k\end{array}}\right) \) that contain a fixed element of \([m]\cap [n]\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlswede R, Khachatrian L (1997) The complete intersection theorem for systems of finite sets. Eur J Combin 18:125–136

    Article  MathSciNet  Google Scholar 

  • Borg P (2011) Intersecting families of sets and permutations: a survey, In: Baswell AR (ed) Advances in mathematics research, vol 16. Nova Science Publishers, pp 283–299

  • Deza M, Frankl P (1983) Erdős–Ko–Rado theorem-22 years later. SIAM J Alg Disc Methods 4:419–431

    Article  Google Scholar 

  • Engel K (1997) Sperner theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Erdős P, Ko C, Rado R (1961) Intersection theorems for systems of finite sets. Quart J Math Oxford Ser 2(12):313–318

    Article  MathSciNet  Google Scholar 

  • Frankl P (1996) An Erdős–Ko–Rado Theorem for direct products. Eur J Combin 17:727–730

    Article  Google Scholar 

  • Frankl P (1987) The shifting technique in extremal set theory. In: Whitehead C (ed) Combinatorial surveys. Cambridge University Press, Cambridge, pp 81–110

    Google Scholar 

  • Frankl P, Tohushige N (1992) Some best possible inequalities concerning cross-intersecting families. J Combin Theory Ser A 61:87–97

    Article  MathSciNet  Google Scholar 

  • Katona G (1964) Intersection theorems for systems of finite sets. Acta Math Acad Sci Hungar 15:329–337

    Article  MathSciNet  Google Scholar 

  • Katona G (1968) A theorem of finite sets. Theory of graphs, Proceeding of Colloquium, Tihany, 1966. Academic Press, New York, pp 187–207

  • Kruskal JB (1963) The number of simplices in a complex. Mathematical Optimization Techniques. University of California Press, Berkeley, CA, pp 251–278

  • Lovász L (1993) Combinatorial problems and exercises, 2nd edn. North-Holland Publishing Co., Amsterdam

    MATH  Google Scholar 

  • Wang J, Zhang HJ (2013) Nontrivial independent sets of bipartite graphs and cross-intersecting families. J Combin Theory Ser A 120:129–141

    Article  MathSciNet  Google Scholar 

  • Wang J, Zhang HJ (2018) Intersecting families in symmetric unions of direct products of set families. SIAM J Discrete Math 32:372–381

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is supported by the National Natural Science Foundation of China (Nos.11171224 and 11971319); the second author is supported by the National Natural Science Foundation of China (Nos.11371327 and 11971439).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, H. Intersecting families in \(\left( {\begin{array}{c}{[m]}\\ \ell \end{array}}\right) \cup \left( {\begin{array}{c}{[n]}\\ k\end{array}}\right) \). J Comb Optim 40, 1020–1029 (2020). https://doi.org/10.1007/s10878-020-00648-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-020-00648-3

Keywords

Navigation