Skip to main content
Log in

On the nature of cosmic strings in black hole spacetimes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A new model for cosmic strings (i.e. conical singularities) attached to black holes is proposed. These string are obtained by a explicit construction via limiting process from the so-called Bonnor rocket. This reveals quite surprising nature of their stress–energy tensor which contains first derivative of Dirac \(\delta \) distribution. Starting from the Bonnor rocket we explicitly construct the Schwarzschild solution witch conical singularity and the C-metric. In the latter case we show that there is a momentum flux through the cosmic string, causing the acceleration of the black hole and the amount of this momentum is in agreement with the momentum taken away by gravitational radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Citation from [16].

References

  1. Nielsen, H.B., Olesen, P.: Vortex-line models for dual strings. Nucl. Phys. 61, 45 (1973). https://doi.org/10.1016/0550-3213(73)90350-7

    Article  ADS  Google Scholar 

  2. Kibble, T.W.B.: Topology of cosmic domains and strings. J. Phys. A 9(8), 1387 (1976). https://doi.org/10.1088/0305-4470/9/8/029

    Article  ADS  MATH  Google Scholar 

  3. Vachaspati, T., Vilenkin, A.: Formation and evolution of cosmic strings. Phys. Rev. D 30, 2036 (1984). https://doi.org/10.1103/PhysRevD.30.2036

    Article  ADS  Google Scholar 

  4. Vachaspati, T., Vilenkin, A.: Gravitational radiation from cosmic strings. Phys. Rev. D 31, 3052 (1985). https://doi.org/10.1103/PhysRevD.31.3052

    Article  ADS  Google Scholar 

  5. Vilenkin, A., Shellard, E.: Cosmic Strings and Other Topological Defects, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  6. Sokoloff, D.D., Starobinskii, A.A.: On the structure of curvature tensor on conical singularities. Dokl. Akad. Nauk SSSR 234, 1043 (1977)

    Google Scholar 

  7. Vilenkin, A.: Gravitational field of vacuum domain walls and strings. Phys. Rev. D 23(4), 852 (1981). https://doi.org/10.1103/physrevd.23.852

    Article  ADS  MathSciNet  Google Scholar 

  8. Hiscock, W.A.: Exact gravitational field of a string. Phys. Rev. D 31(12), 3288 (1985). https://doi.org/10.1103/physrevd.31.3288

    Article  ADS  MathSciNet  Google Scholar 

  9. Weyl, H.: Zur Gravitationstheorie. Ann. Phys. 359(18), 117 (1917). https://doi.org/10.1002/andp.19173591804

    Article  MATH  Google Scholar 

  10. Israel, W.: Singular hypersurfaces and thin shells in general relativity. Nuovo Cimento B Ser. 44, 1 (1966). https://doi.org/10.1007/BF02710419

    Article  ADS  Google Scholar 

  11. Israel, W.: Singular hypersurfaces and thin shells in general relativity. Nuovo Cimento B Ser. 48, 463 (1967). https://doi.org/10.1007/BF02712210

    Article  ADS  Google Scholar 

  12. Geroch, R., Traschen, J.: Strings and other distributional sources in general relativity. Phys. Rev. D 36, 1017 (1987). https://doi.org/10.1103/PhysRevD.36.1017

    Article  ADS  MathSciNet  Google Scholar 

  13. Christensen, M., Larsen, A.L., Verbin, Y.: Complete classification of the string-like solutions of the gravitating Abelian Higgs model. Phys. Rev. D 60(12), 125012 (1999). https://doi.org/10.1103/physrevd.60.125012

    Article  ADS  Google Scholar 

  14. Dyer, C.C., Marleau, F.R.: Complete model of a self-gravitating cosmic string: a new class of exact solutions. Phys. Rev. D 52(10), 5588 (1995). https://doi.org/10.1103/physrevd.52.5588

    Article  ADS  Google Scholar 

  15. Sen, A.A., Banerjee, N., Banerjee, A.: Static cosmic strings in Brans–Dicke theory. Phys. Rev. D 56(6), 3706 (1997). https://doi.org/10.1103/physrevd.56.3706

    Article  ADS  Google Scholar 

  16. Israel, W.: Line sources in general relativity. Phys. Rev. D 15(4), 935 (1977). https://doi.org/10.1103/physrevd.15.935

    Article  ADS  MathSciNet  Google Scholar 

  17. Bonnor, W.B.: Another photon rocket. Class. Quantum Gravity 13(2), 277 (1996). https://doi.org/10.1088/0264-9381/13/2/015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Vaidya, P.C.: The external field of a radiating star in general relativity. Curr. Sci. 12, 183 (1943)

    ADS  MathSciNet  Google Scholar 

  19. Olver, F.W., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions, 1st edn. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  20. Griffiths, J.B., Podolský, J.: Exact Space-Times in Einstein’s General Relativity. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  21. Stephani, H., Kramer, D., MacCallum, M., Hoensealers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  22. Kofroň, D.: Separability of test fields equations on the C-metric background. Phys. Rev. D 92(12), 124064 (2015). https://doi.org/10.1103/physrevd.92.124064

    Article  ADS  MathSciNet  Google Scholar 

  23. Kofroň, D.: Separability of test fields equations on the C-metric background. II. Rotating case and the Meissner effect. Phys. Rev. D 93(10), 104012 (2016). https://doi.org/10.1103/physrevd.93.104012

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

D.K. acknowledges the support from the Czech Science Foundation, Grant 17-16260Y. Moreover, D.K. would like to thank Dr. M. Scholtz for inspiring discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kofroň.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kofroň, D. On the nature of cosmic strings in black hole spacetimes. Gen Relativ Gravit 52, 91 (2020). https://doi.org/10.1007/s10714-020-02741-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02741-8

Keywords

Navigation