Skip to main content

Advertisement

Log in

Cellulose nanofibril/polypyrrole hybrid aerogel supported form-stable phase change composites with superior energy storage density and improved photothermal conversion efficiency

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The development of phase change materials (PCMs) with high energy storage density, enhanced photothermal conversion efficiency and good form-stability is essential for practical application in utilization of solar energy. Herein, novel PCM composites (CPPCMs) with extremely high energy storage density and superb solar-thermal conversion performance were fabricated by introducing n-octacosane into three-dimensional (3D) porous cellulose nanofibril (CNF)/polypyrrole (PPy) hybrid aerogels. Due to the strong encapsulation capability of CNF/PPy hybrid aerogels (CPAs), the synthesized PCM composites maintained perfect shape stability above the melting point of n-octacosane. Further investigation showed CPPCMs exhibited extremely high latent heat in the range of 239.4–258.4 J/g and high loading rate of n-octacosane (up to 96%). The melting/cooling cycling test and thermogravimetric analysis indicated the composite PCMs possessed excellent cyclic stability and thermal stability. Moreover, simulated sunlight test showed that the photothermal conversion efficiency of CPPCMs significantly improved with the increased content of polypyrrole in the PCM composites. In conclusion, the obtained PCM composites, which exhibited excellent shape stability, superior solar-heat conversion capability and extremely high energy storage density, showed considerable potential for practical utilization and storage of solar energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8
Fig 9
Fig 10

Similar content being viewed by others

References

  • Chen Y, Lyu S, Han S, Chen Z, Wang W, Wang S (2018) Nanocellulose/polypyrrole aerogel electrodes with higher conductivity via adding vapor grown nanocarbon fibers as conducting networks for supercapacitor application. RSC Adv 8:39918–39928

    Article  CAS  Google Scholar 

  • De France K, Todd H, Emily D (2017) Review of hydrogels and aerogels containing anocellulose. Chem Mater 29:4609–4631

    Article  Google Scholar 

  • Du X, Fang Y, Cheng X, Du Z, Zhou M, Wang H (2018a) Fabrication and characterization of flame-retardant nanoencapsulated n-octadecane with melamine-formaldehyde shell for thermal energy storage. ACS Sustain Chem Eng 6:15541–155499

    Article  CAS  Google Scholar 

  • Du X, Wang S, Du Z, Cheng X, Wang H (2018b) Preparation and characterization of flame-retardant nanoencapsulated phase change materials with poly(methylmethacrylate) shells for thermal energy storage. J Mater Chem A 6:17519–17529

    Article  CAS  Google Scholar 

  • Du X, Xu J, Deng S, Du Z, Cheng X, Wang H (2019) Amino-functionalized single-walled carbon nanotubes-integrated polyurethane phase change composites with superior photothermal conversion efficiency and thermal conductivity. ACS Sustain Chem Eng 7:17682–17690

    Article  CAS  Google Scholar 

  • Du X, Qiu J, Deng S, Du Z, Cheng X, Wang H (2020a) Alkylated nanofibrillated cellulose/carbon nanotubes aerogels supported form-stable phase change composites with improved n-alkanes loading capacity and thermal conductivity. ACS Appl Mater Interfaces 12:5695–5703

    Article  CAS  Google Scholar 

  • Du X, Zhou M, Deng S, Du Z, Cheng X, Wang H (2020b) Poly(ethylene glycol)-grafted nanofibrillated cellulose/graphene hybrid aerogels supported phase change composites with superior energy storage capacity and solar-thermal conversion efficiency. Cellulose 27:4679–4690

    Article  CAS  Google Scholar 

  • Elashnikov R, Rimpelova S, Dekanovsky L, Svorcik V, Lyutakov O (2019) Polypyrrole-coated cellulose nanofibers: influence of orientation, coverage and electrical stimulation on SH-SY5Y behavior. J Mater Chem B 7:6500–6507

    Article  CAS  Google Scholar 

  • Jiang Y, Ding E, Li G (2002) Study on transition characteristics of PEG/CDA solid-solid phase change materials. Polymer 43:117–122

    Article  CAS  Google Scholar 

  • Jiang L, Fan Z (2014) Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale 6:1922–1945

    Article  CAS  Google Scholar 

  • Lavoine N, Bergström L (2017) Nanocellulose-based foams and aerogels: processing, properties, and applications. J Mater Chem A 5:16105–16117

    Article  CAS  Google Scholar 

  • Liao H, Chen W, Liu Y, Wang Q (2020) A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability. Compos Sci Technol 189:108010

    Article  CAS  Google Scholar 

  • Liu L, Fan X, Zhang Y, Zhang S, Wang W, Jin X, Tang B (2020) Novel bio-based phase change materials with high enthalpy for thermal energy storage. Appl Energy 268:114979

    Article  CAS  Google Scholar 

  • Ma Y, Zong J, Li W, Chen L, Tang X, Han N, Wang J, Zhang X (2015) Synthesis and characterization of thermal energy storage microencapsulated n-dodecanol with acrylic polymer shell. Energy 87:86–94

    Article  CAS  Google Scholar 

  • Mu B, Li M (2019) Synthesis of novel form-stable composite phase change materials with modified graphene aerogel for solar energy conversion and storage. Sol Energy Mater Sol Cells 191:466–475

    Article  CAS  Google Scholar 

  • Qiu J, Fan X, Shi Y, Zhang S, Jin X, Wang W, Tang B (2019) PEG/3D graphene oxide network form-stable phase change materials with ultrahigh filler content. J Mater Chem A 7:21371–21377

    Article  CAS  Google Scholar 

  • Ramesan M, Santhi V (2017) In situ synthesis, characterization, conductivity studies of polypyrrole/silver doped zinc oxide nanocomposites and their application for ammonia gas sensing. J Mater Sci-Mater El 28:18804–18814

    Article  CAS  Google Scholar 

  • Rathod M, Banerjee J (2013) Thermal stability of phase change materials used in latent heat energy storage systems: a review. Renew Sust Energy Rev 18:246–258

    Article  CAS  Google Scholar 

  • Shen J, Zhang P, Song L, Li J, Ji B, Li J, Chen L (2019) Polyethylene glycol supported by phosphorylated polyvinyl alcohol/graphene aerogel as a high thermal stability phase change material. Compos Part B-Eng 179:107545

    Article  CAS  Google Scholar 

  • Si Y, Wang X, Dou L, Yu J, Ding B (2018) Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci Adv 4:8925–8934

    Article  Google Scholar 

  • Song S, Zhao T, Qiu F, Zhu W, Chen T, Guo Y, Zhang Y, Wang Y, Feng R, Liu Y, Xiong C, Zhou J, Dong L (2019) Natural microtubule encapsulated phase change material with high thermal energy storage capacity. Energy 172:1144–1150

    Article  CAS  Google Scholar 

  • Sun Y, Jia D, Zhang A, Tian J, Zheng Y, Zhao W, Cui L, Liu J (2019) Synthesis of polypyrrole coated melamine foam by in-situ interfacial polymerization method for highly compressible and flexible supercapacitor. J Colloid Interface Sci 557:617–627

    Article  CAS  Google Scholar 

  • Tang Y, Yeo K, Chen Y, Yap L, Xiong W, Cheng W (2013) Ultralow-density copper nanowire aerogel monoliths with tunable mechanical and electrical properties. J Mater Chem A 1:6723–6726

    Article  CAS  Google Scholar 

  • Tang L, Zhao X, Feng C, Bai L, Yang J, Bao R, Liu Z, Yang M, Yang W (2019) Bacterial cellulose/MXene hybrid aerogels for photodriven shape-stabilized composite phase change materials. Sol Energy Mater Sol Cells 203:110174

    Article  CAS  Google Scholar 

  • Tumirah K, Hussein M, Zulkarnain Z, Rafeadah R (2014) Nanoencapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage. Energy 66:881–890

    Article  CAS  Google Scholar 

  • Wang C, Feng L, Li W, Zheng J, Tian W, Li X (2012) Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: the influence of the pore structure of the carbon materials. Sol Energy Mater Sol Cells 105:21–26

    Article  CAS  Google Scholar 

  • Wang T, Zhang W, Yang S, Liu X, Zhang L (2020) Preparation of foam-like network structure of polypyrrole/graphene composite particles based on cellulose nanofibrils as electrode material. ACS Omega 5:4778–4786

    Article  CAS  Google Scholar 

  • Wei Y, Li J, Sun F, Wu J, Zhao L (2018) Leakage-proof phase change composites supported by biomass carbon aerogels from succulents. Green Chem 20:1858–1865

    Article  CAS  Google Scholar 

  • Wei X, Xue F, Qi X, Yang J, Zhou Z, Yuan Y, Wang Y (2019) Photo- and electro-responsive phase change materials based on highly anisotropic microcrystalline cellulose/graphene nanoplatelet structure. Appl Energy 236:70–80

    Article  CAS  Google Scholar 

  • Wu B, Zhu G, Dufresne A, Lin N (2019) Fluorescent aerogels based on chemical crosslinking between nanocellulose and carbon dots for optical sensor. ACS Appl Mater Interface 11:16048–16058

    Article  CAS  Google Scholar 

  • Xia Y, Cui W, Zhang H, Xu F, Sun L, Zou Y, Chu H, Yan E (2017) Synthesis of three-dimensional graphene aerogel encapsulated n-octadecane for enhancing phase-change behavior and thermal conductivity. J Mater Chem A 5:15191–15199

    Article  CAS  Google Scholar 

  • Xiang J, Drzal L (2011) Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material. Sol Energy Mater Sol Cells 95:1811–1818

    Article  CAS  Google Scholar 

  • Yang J, Zhang E, Li X, Zhang Y, Qu J, Yu Z (2016) Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98:50–57

    Article  CAS  Google Scholar 

  • Ye S, Zhang Q, Hu D, Feng J (2015) Core–shell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage. J Mater Chem A 3:4018–4025

    Article  CAS  Google Scholar 

  • Yuan F, Li M, Qiu Y, Ma Z, Li M (2019) Specific heat capacity improvement of molten salt for solar energy applications using charged single-walled carbon nanotubes. Appl Energy 250:1481–1490

    Article  CAS  Google Scholar 

  • Zhang L, Li R, Tang B, Wang P (2016) Solar-thermal conversion and thermal energy storage of graphene foam-based composites. Nanoscale 8:14600–14607

    Article  CAS  Google Scholar 

  • Zhou Y, Wang X, Liu X, Sheng D, Ji F, Dong L, Xu S, Wu H, Yang Y (2019) Multifunctional ZnO/polyurethane-based solid-solid phase change materials with graphene aerogel. Sol Energy Mater Sol C 193:13–21

    Article  CAS  Google Scholar 

  • Zhu Y, Qin Y, Liang S, Chen K, Tian C, Wang J, Luo X, Zhang L (2019) Graphene/SiO2/n-octadecane nanoencapsulated phase change material with flower like morphology, high thermal conductivity, and suppressed supercooling. Appl Energy 250:98–108

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Nos. 51773129, 51903167) and Sichuan Science and Technology Program (2019YFG0257). The author also appreciate Mi Zhou and Sha Deng from College of Biomass Science and Engineering of Sichuan University for her experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaosheng Du or Haibo Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Tan, Y., Du, X. et al. Cellulose nanofibril/polypyrrole hybrid aerogel supported form-stable phase change composites with superior energy storage density and improved photothermal conversion efficiency. Cellulose 27, 9547–9558 (2020). https://doi.org/10.1007/s10570-020-03437-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03437-7

Keywords

Navigation