Skip to main content
Log in

Designing Optical Waveguides: Myth and Reality

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, a review of numerical methods for design and analysis of nano/micro-sized optical waveguides is carried out. Besides discussing various types of optical waveguides, design of few structures is also presented using FDTD, BPM, and FEM algorithms. Subsequently, few optical devices based upon integration of more than one optical waveguide have also been revealed. Modal effective index analysis and its impact on waveguide designing/signal propagation has also been brought into consideration. Optical waveguides characterization has been carried out by computing second-order and higher order dispersion characteristics, which is vital for information interchange and other nonlinear phenomena. It is anticipated that this effort will help readers in understanding the requirement (subsequently selection) of tools for the design and analysis of optical waveguides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R.G. Hunsperger, in Optical waveguide modes. Integrated Optics. 3rd edn., ed. by R.G. Hunsperger (Springer, New York, 2009), pp. 17–31

  2. J.P. Chewn, B.I. Tien, US Patent 20160077293A1 (2016)

  3. B.E.A. Saleh, M.C. Teich. Fundamentals of Photonics, 2nd edn. (Wiley, New York, 1991), pp. 1–40. https://doi.org/10.1002/0471213748.ch1

    Book  Google Scholar 

  4. A. Ozden, M. Demirtas, F. Ay, (2015)

  5. M. Rezem, A. Gunther, M. Rahlves, B. Roth, E. Reithmeier, Elsevier Procedia Technology. https://doi.org/10.1016/j.protcy.2016.08.064 (2016)

  6. C. Jamois, R.B. Wehrspohn, L.C. Andreani, C. Hermann, O. Hess, U. Gosele, Elsevier photonics and nanostructures – fundamentals and applications. https://doi.org/10.1016/j.photonics.2003.10.001 (2003)

  7. M. Lipson, J. Lightwave Technology. https://doi.org/10.1109/JLT.2005.858225 (2005)

  8. V.R. Almeida, Q. Xu, C.A. Barrios, M. Lipson, Optics Letters. https://doi.org/10.1364/OL.29.001209(2004)

  9. M. Lipson, C.A. Barrios, V.R. Almeida, R.R. Panepucci, Q. Xu, US Patent 7519257B2 (2009)

  10. H. Huang, S.T. Ho, D. Huang, Y. Tu, H. Hu, J. Wang, W. Liu, Taylor and francis. J. Mod. Opt. 57, 7 (2010). https://doi.org/10.1080/09500341003774712

    Article  Google Scholar 

  11. J.D. Park, K.H. Cho, H.H. Hatami, N. Ahmadvand, US Patent 6763155 B2 (2004)

  12. J.J. Wu, Progress In Electromagnetics Research C. 1, 113–122 (2008). https://doi.org/10.2528/PIERC08012406

    Article  ADS  Google Scholar 

  13. X. Chen, R.T. Chen, US Patent 20100226608A1 (2010)

  14. D.T.H. Tan, A. Grieco, Y. Fainman, Opt. Express. 22, 9 (2014). https://doi.org/10.1364/OE.22.010408

    Article  Google Scholar 

  15. J. B. Héroux, M. Tokunari, US patent 9470846B2 (2016)

  16. A. Dutta, B. Deka, P.P. Sahu. Planar Waveguide Optical Sensors from Theory to Applications (Springer, Engineering Materials, Berlin, 2016), pp. 9–69. ISBN 978-3-319-35140-7

    Book  Google Scholar 

  17. A. Sakai, G. Hara, T. Baba, Jpn. J. Appl. Phys. 4B, 40 (2001). https://doi.org/10.1143/JJAP.40.L383

    Google Scholar 

  18. P.A. Anderson, B.S. Schmidt, M. Lipson, Opt. Express. 14, 20 (2006). https://doi.org/10.1364/OE.14.009197

    Google Scholar 

  19. K.R. Hiremath, J. Opt. Soc. Am. A. 26, 11 (2009). https://doi.org/10.1364/JOSAA.26.002321

    Article  Google Scholar 

  20. T. Fukazawa, F. Ohno, T. Baba, Jpn. J. Appl. Phys. 5B, 43 (2004). https://doi.org/10.1143/JJAP.43.L673

    Google Scholar 

  21. K. Sasaki, F. Ohno, A. Motegi, T. Baba, Elects Letters. 41, 14 (2005). https://doi.org/10.1049/el:20051541

    Article  ADS  Google Scholar 

  22. L. Vivien, L. Pavesi, Handbook of silicon photonics. Taylor and Francis, 85–96. https://doi.org/10.1201/b14668 (2016)

  23. R. Scarmozzino, A. Gopinath, R. Pregla, S.F. Heltfert, IEEE Journal of selected topics in Quantum Electronics. 6, 1 (2000). https://doi.org/10.1109/2944.826883

    Article  Google Scholar 

  24. J. Jin. The Finite Element Method in Electromagnetics, 2nd edn. (Wiley, NY, 2015), pp. 233–633. ISBN13 9780471438182

    Google Scholar 

  25. OptiFDTD - Optiwave, ver-7.0, pp. 1–40 (2007)

  26. J.S. Gu, P.A. Besse, H. Melchior, IEEE J. Quantum Electron. 27, 3 (1991). https://doi.org/10.1109/3.81359

    Article  Google Scholar 

  27. M.M. Ney, IEEE Transactions on microwave theory and techniques 33. https://doi.org/10.1109/TMTT.1985.1133158 (1985)

  28. W. Yang, A. Gopinath, IEEE Photon. Technol. Lett. 7, 7 (1995). https://doi.org/10.1109/68.393203

    Article  Google Scholar 

  29. H.M. Masoudi, Journal of Light-wave Technology. 25, 10 (2007). https://doi.org/10.1109/JLT.2007.904425

    Article  Google Scholar 

  30. H.M. Masoudi, M.A. Sunaidi, J.M. Arnold, J. Lightwave Technol. 19, 5 (2001). https://doi.org/10.1109/50.923490

    Article  Google Scholar 

  31. K. Kawano, T. Kitoh. Introduction to optical waveguide analysis: solving Maxwell’s equation and the Schrodinger equation (Wiley, New York, 2001), pp. 1–245. ISBN: 0-471-22160-0

    Book  Google Scholar 

  32. S.F. Helfert, R. Pregla, Opt. Quant. Elect. 32, 681–690 (2000). https://doi.org/10.1023/A:1007097924554

    Article  Google Scholar 

  33. X.C. Tong, Advanced Materials for Integrated Optical Waveguides. Springer. https://doi.org/10.1007/978-3-319-01550-7

  34. OptiBPM - ver-6.0, 1-25 (2005)

  35. K. Okamoto, in Chapter 7 – Beam Propagation Method. Fundamentals of Optical Waveguides. 2nd edn., ed. by K Okamoto. ISBN:9780080455068 (Academic Press, 2006), pp. 329– -383

  36. I.D. Kim, Y. Avrahami, L. Socci, F.L. Royo, H.L. Tuller, J. Asian Ceram. Soc. https://doi.org/10.1016/j.jascer.2014.05.002 (2014)

  37. D. Dai, Z. Sheng, JOSA B. 24(11), 2853–2859 (2007). https://doi.org/10.1364/JOSAB.24.002853

    Article  ADS  Google Scholar 

  38. https://my.ece.utah.edu/~ece6340/LECTURES/lecture-2014/ (Last Accessed on 13 May, 2020)

  39. G.T. Reed, A.P. Knights. Silicon photonics: An Introduction (Wiley, New York, 2004), pp. 1–249. ISBN: 978-0-470-87034-1

    Book  Google Scholar 

  40. R.A. Soref, J. Schmidtchen, K. Petermann, IEEE J. Quantum Electron. 27, 8 (1991). https://doi.org/10.1109/3.83406

    Article  Google Scholar 

  41. L.E.G. Castillo, A.J.R. Genoves, I.G. Revuelto, IEEE Trans. Magn. 28, 5 (2002). https://doi.org/10.1109/TMAG.2002.803577

    Google Scholar 

  42. Y. Noguchi, T. Yamada, K. Izui, S. Nishiwaki, Computer Methods in Applied Mechanics and Engineering. https://doi.org/10.1016/j.cma.2018.02.031 (2018)

  43. A. Oskooi, S.G. Johnson. Chapter 4 : Electromagnetic Wave Source Conditions (Artech House, Norwood, 2013). ISBN 978-1-60807-170-8

    Google Scholar 

  44. T. Bora, A. Dousse, K. Sharma, Taylor and Francis. Intl. J. Smart Nano Mater. https://doi.org/10.1080/19475411.2018.1541935 (2018)

  45. A.W. Snyder, J. Love. Optical Waveguide Theory (Springer, Berlin, 2012), pp. 375–475. ISBN 978-1-4613-2813-1

    Google Scholar 

  46. D. Marcuse. Theory of Dielectric Optical Waveguides, 2nd edn. (Academic Press, UK, 1992), pp. 1–91

    Google Scholar 

  47. R.J. Black, L. Gagnon. Optical Waveguide Modes: Polarization, Coupling, and Symmetry, 1st edn. (McGraw-Hill Co., New York, 2010), pp. 100–167. ISBN:978-0-07-162914-0

    Google Scholar 

  48. J. Ji, X. Chen, K. Wang, M. Xu, F. Wang, C. Jiang, Springer Optical and Quant Elects. https://doi.org/10.1007/s11082-017-1267-1 (2018)

  49. M. Skorobogatiy, Optics Letters. https://doi.org/10.1364/OL.30.002991 (2005)

  50. T. Theodor. Guided-Wave Optoelectronics (Springer, Berlin, 1990), pp. 1–200. ISBN: 978-3-540-52780-0

    Google Scholar 

  51. D. Yuan, Y. Dong, Y. Liu, T. Li, X. Zhang, Y. Tan, SPIE OIT. https://doi.org/10.1117/12.2185098 (2015)

  52. G.T. Reed, Lecture: Silicon Photonics Waveguides. University of Surrey Guildford, UK. https://doi.org/10.1117/12.823291

  53. J.G. Manni, J.W. Goodman, Optics Express. https://doi.org/10.1364/OE.20.011288 (2012)

  54. M. Chauvet, F. Henrot, F. Bassignont, F. Devaux, L.G. Manuel, V. Pecheur, H. Maillotte, B. Dahmani, preprint, arXiv:1603.05267 (2016)

  55. V. Prajzler, P. Nekvindova, P. Hyps, O. Lyutakov, V. Jerabek, J. Radio Eng. 23, 3 (2014). https://doaj.org/article/ae10928b67b04a2e80e0dd58260ac515

    Google Scholar 

  56. M. Notomi, A. Shinya, K. Yamada, J.I. Takahashi, C. Takahashi, I. Yokohama, IEEE Journal of Quantum Electronics. https://doi.org/10.1109/JQE.2002.1017583 (2002)

  57. Z. Zheng, J.S. Liu, M. Iqbal, Chinese patent ZL 200710176770 (2007)

  58. M. Iqbal, Z. Zheng, J.S. Liu, IEEE, ICMMT. https://doi.org/10.1109/ICMMT.2008.4540544 (2008)

  59. Z. Zheng, M. Iqbal, J.S. Liu, Optics commun. https://doi.org/10.1016/j.optcom.2008.07.003 (2008)

  60. M. Iqbal, Z. Zheng, J.S. Liu, SPIE, OIT - 2009, pp. 750805. https://doi.org/10.1117/12.837227

  61. M. Iqbal, Z. Zheng, J.S. Liu, SPIE, OIT - 2009, pp. 750804. https://doi.org/10.1117/12.837226

  62. M. Iqbal, Z. Zheng, J.S. Liu, IEEE, IBCAST (2011)

  63. M. Iqbal, Z. Zheng, J.S. Liu, Recent patents on Nano-Technology. https://doi.org/10.2174/187221012798109282 (2012)

  64. M. Iqbal, Elsevier – IJLEO. https://doi.org/10.1016/j.ijleo.2014.01.053 (2014)

  65. M. Iqbal, M. Iqbal, Elsevier – IJLEO. https://doi.org/10.1016/j.ijleo.2017.01.019 (2017)

  66. https://refractiveindex.info/ Online data for refractive index using Sellmeier’s equation (Last accessed on 13 May, 2020)

  67. G.P. Agrawal. Nonlinear Fiber Optics, 5th edn. (Elsevier-Academic Press, Cambridge, 2013), pp. 1–244. https://doi.org/10.1016/C2011-0-00045-5

    Book  Google Scholar 

  68. Y. Bian, Z. Zheng, Z. Xin, Y. SU, L. Liu, J.S. Liu, J. Zhu, T. Zhou, Optics Commun. https://doi.org/10.1016/j.optcom.2012.07.104 (2012)

  69. Y. Guo, Z. Jafari, A.M. Agrawal, L.C. Kimerling, G. Li, J. Michel, L. Zhang, Optics Letters. https://doi.org/10.1364/OL.41.004939 (2016)

Download references

Acknowledgments

The first author duly acknowledge discussions and relevant research/simulations support by Prof Dr. Z Zheng from the Department of Photonics Engineering, Beihang University, Beijing, PRC, and discussions with Mr. Muzaffar Qazi (a veteran research scientist in the field of lasers and optics).

All the authors are grateful to the editors and reviewers for their hard work and effective and thoughtful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muddassir Iqbal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, M., Zhao, D., Ma, Y. et al. Designing Optical Waveguides: Myth and Reality. Braz J Phys 50, 857–873 (2020). https://doi.org/10.1007/s13538-020-00763-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00763-w

Keywords

Navigation