Skip to main content

Advertisement

Log in

Hydrostatic cyclic extrusion compression (HCEC) process; a new CEC counterpart for processing long ultrafine-grained metals

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Hydrostatic cyclic extrusion–compression as a novel severe plastic deformation method in the processing of the rods is introduced and used for refining ultrafine-grained commercial pure aluminum. HCEC is solving the limitation of the conventional CEC in producing long-length samples by utilizing pressurized hydraulic fluid and eliminating the frictional effects. An increase in the length of the processable sample, a reduction in the processing loads, an intensification in the hydrostatic stress, and improvement in the strain distribution are the novel achievements of the HCEC. The capability of HCEC in grain refinement of the commercial pure aluminum was investigated by transmission electron microscopy analysis. The processed samples showed the grain sizes of 780 nm and 400 nm after the first and second passes of the HCEC, respectively. Furthermore, tensile and shear punch tests were utilized for investigation of the mechanical properties of the unprocessed and HCEC processed rods. An increase in the tensile and shear yield and ultimate strengths after the process confirmed the decreases in grain sizes. The tensile yield and ultimate strengths of the rod after the second cycle of the process reached 170 and 196 MPa, respectively. The same increasing trend as strength was shown in the microhardness after the HCEC. FEM analysis depicted the homogenous distribution of strain along the length of the sample. Also, the independency of the processing force to the length of the sample was shown by the FEM. The implementation of this novel technique looks very interesting for the industrial utilization of SPD techniques, especially in automotive and aerospace industries, which suffer from the limited size of the processing specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Figure 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kleiner M, Chatti S, Klaus A. Metal forming techniques for lightweight construction. J Mater Process Technol. 2006;177(1–3):2–7.

    Article  Google Scholar 

  2. Valiev R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nat Mater. 2004;3(8):511.

    Article  Google Scholar 

  3. Alihosseini H, Faraji G, Dizaji A, Dehghani K. Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE). Mater Charact. 2012;68:14–211.

    Article  Google Scholar 

  4. Richert MW. Features of cyclic extrusion compression: method, structure & materials properties. Solid State Phenom. 2006;114:19–28.

    Article  Google Scholar 

  5. Pachla W, Kulczyk M, Przybysz S, Skiba J, Wojciechowski K, Przybysz M, Topolski K, Sobolewski A, Charkiewicz M. Effect of severe plastic deformation realized by hydrostatic extrusion and rotary swaging on the properties of CP Ti grade 2. J Mater Process Technol. 2015;221:255–68.

    Article  Google Scholar 

  6. Lin J, Wang Q, Peng L, Roven HJ. Microstructure and high tensile ductility of ZK60 magnesium alloy processed by cyclic extrusion and compression. J Alloy Compd. 2009;476(1–2):441–5.

    Article  Google Scholar 

  7. Richert M, McQueen H, Richert J. Micrbband formation in cyclic extrusion compression of aluminum. Can Metall Q. 1998;37(5):449–57.

    Google Scholar 

  8. Faraji G, Kim HS, Kashi HT. Severe plastic deformation: methods, processing and properties. Amsterdam: Elsevier; 2018.

    Book  Google Scholar 

  9. Chen Y, Wang Q, Lin J, Zhang L, Zhai C. Fabrication of bulk UFG magnesium alloys by cyclic extrusion compression. J Mater Sci. 2007;42(17):7601–3.

    Article  Google Scholar 

  10. Pardis N, Talebanpour B, Ebrahimi R, Zomorodian S. Cyclic expansion-extrusion (CEE): a modified counterpart of cyclic extrusion-compression (CEC). Mater Sci Eng A. 2011;528(25–26):7537–40.

    Article  Google Scholar 

  11. Richert M, Liu Q, Hansen N. Microstructural evolution over a large strain range in aluminium deformed by cyclic-extrusion–compression. Mater Sci Eng A. 1999;260(1–2):275–83.

    Article  Google Scholar 

  12. Chen Y, Wang Q, Roven H, Karlsen M, Yu Y, Liu M, Hjelen J. Microstructure evolution in magnesium alloy AZ31 during cyclic extrusion compression. J Alloy Compd. 2008;462(1–2):192–200.

    Article  Google Scholar 

  13. Wang Q, Chen Y, Liu M, Lin J, Roven HJ. Microstructure evolution of AZ series magnesium alloys during cyclic extrusion compression. Mater Sci Eng A. 2010;527(9):2265–73.

    Article  Google Scholar 

  14. Savarabadi MM, Faraji G, Eftekhari M. Microstructure and mechanical properties of the commercially pure copper tube after processing by hydrostatic tube cyclic expansion extrusion (HTCEE). In: Metals and materials international. 2019. p. 1–15.

  15. Amani S, Faraji G, Mehrabadi HK, Abrinia K, Ghanbari H. A combined method for producing high strength and ductility magnesium microtubes for biodegradable vascular stents application. J Alloy Compd. 2017;723:467–76.

    Article  Google Scholar 

  16. Bohlen J, Yi S, Swiostek J, Letzig D, Brokmeier H, Kainer K. Microstructure and texture development during hydrostatic extrusion of magnesium alloy AZ31. Scr Mater. 2005;53(2):259–64.

    Article  Google Scholar 

  17. Manafi B, Shatermashhadi V, Abrinia K, Faraji G, Sanei M. Development of a novel bulk plastic deformation method: hydrostatic backward extrusion. Int J Adv Manuf Technol. 2016;82(9–12):1823–30.

    Article  Google Scholar 

  18. Jamali S, Faraji G, Abrinia K. Hydrostatic radial forward tube extrusion as a new plastic deformation method for producing seamless tubes. Int J Adv Manuf Technol. 2017;88(1–4):291–301.

    Article  Google Scholar 

  19. Samadpour F, Faraji G, Babaie P, Bewsher SR, Mohammadpour M. Hydrostatic cyclic expansion extrusion (HCEE) as a novel severe plastic deformation process for producing long nanostructured metals. Mater Sci Eng A. 2018;718:412–7.

    Article  Google Scholar 

  20. Faraji G,  Kim HS, Torabzadeh Kashi H. Severe plastic deformation: methods, processing and properties. Elsevier, 2018.

  21. Peters M, Kumpfert J, Ward CH, Leyens C. Titanium alloys for aerospace applications. Adv Eng Mater. 2003;5(6):419–27.

    Article  Google Scholar 

  22. Long R, Boettcher E, Crawford D. Current and future uses of aluminum in the automotive industry. JOM. 2017;69(12):2635–9.

    Article  Google Scholar 

  23. Monetta T, Acquesta A, Maresca V, Signore R, Bellucci F, Di Petta P, Lo Masti M. Characterization of aluminum alloys environmentally friendly surface treatments for aircraft and aerospace industry. Surf Interface Anal. 2013;45(10):1522–9.

    Article  Google Scholar 

  24. Ito Y, Edalati K, Horita Z. High-pressure torsion of aluminum with ultrahigh purity (99.9999%) and occurrence of inverse Hall–Petch relationship. Mater Sci Eng A. 2017;679:428–34.

    Article  Google Scholar 

  25. Kim K, Yang D-Y, Yoon JW. Microstructural evolution and its effect on mechanical properties of commercially pure aluminum deformed by ECAE (equal channel angular extrusion) via routes A and C. Mater Sci Eng A. 2010;527(29–30):7927–30.

    Article  Google Scholar 

  26. Soliman MS, El-Danaf EA, Almajid AA. Effect of equal-channel angular pressing process on properties of 1050 Al alloy. Mater Manuf Process. 2012;27(7):746–50.

    Article  Google Scholar 

  27. Lewandowska M. Mechanism of grain refinement in aluminium in the process of hydrostatic extrusion. Solid State Phenom. 2006;114:109–16.

    Article  MathSciNet  Google Scholar 

  28. Todaka Y, Umemoto M, Yamazaki A, Sasaki J, Tsuchiya K. Influence of high-pressure torsion straining conditions on microstructure evolution in commercial purity aluminum. Mater Trans. 2008;49:7–14.

    Article  Google Scholar 

  29. Rahmatabadi D, Hashemi R. Experimental evaluation of forming limit diagram and mechanical properties of nano/ultra-fine grained aluminum strips fabricated by accumulative roll bonding. Int J Mater Res. 2017;108(12):1036–44.

    Article  Google Scholar 

  30. Alimirzaloo V, Modanloo V. Investigation of the forming force in torsion extrusion process of aluminum alloy 1050. Int J Eng. 2017;30(6):920–5.

    Google Scholar 

  31. Lewandowska M, Kurzydlowski KJ. Recent development in grain refinement by hydrostatic extrusion. J Mater Sci. 2008;43(23–24):7299.

    Article  Google Scholar 

  32. Rahimi F, Eivani A. A new severe plastic deformation technique based on pure shear. Mater Sci Eng A. 2015;626:423–31.

    Article  Google Scholar 

  33. Alihosseini H, Zaeem MA, Dehghani K, Shivaee HA. Producing ultrafine-grained aluminum rods by cyclic forward-backward extrusion: study the microstructures and mechanical properties. Mater Lett. 2012;74:147–50.

    Article  Google Scholar 

  34. Akbaripanah F, Fereshteh-Saniee F, Mahmudi R, Kim H. Microstructural homogeneity, texture, tensile and shear behavior of AM60 magnesium alloy produced by extrusion and equal channel angular pressing. Mater Des. 2013;43:31–9.

    Article  Google Scholar 

  35. Samadpour F, Siahsarani A, Faraji G, Bahrami M. Experimental and finite element analyses of the hydrostatic cyclic expansion extrusion (HCEE) process with back-pressure. J Ultrafine Grained Nanostruct Mater. 2019;52(1):25–31.

    Google Scholar 

  36. Richert M, Stüwe H, Richert J, Pippan R, Motz C. Characteristic features of microstructure of ALMg5 deformed to large plastic strains. Mater Sci Eng A. 2001;301(2):237–43.

    Article  Google Scholar 

  37. Samadpour F, Faraji G, Siahsarani A. Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new SPD method. Int J Miner Metall Mater. 2020;27(5):669–77.

    Article  Google Scholar 

  38. Savarabadi MM, Faraji G, Zalnezhad E. Hydrostatic tube cyclic expansion extrusion (HTCEE) as a new severe plastic deformation method for producing long nanostructured tubes. J Alloy Compd. 2019;785:163–8.

    Article  Google Scholar 

  39. Amani S, Faraji G, Abrinia K. Microstructure and hardness inhomogeneity of fine-grained AM60 magnesium alloy subjected to cyclic expansion extrusion (CEE). J Manuf Process. 2017;28:197–208.

    Article  Google Scholar 

  40. Babaei A, Mashhadi M. Tubular pure copper grain refining by tube cyclic extrusion–compression (TCEC) as a severe plastic deformation technique. Prog Nat Sci Mater Int. 2014;24(6):623–30.

    Article  Google Scholar 

  41. Jiang J, Ding Y, Zuo F, Shan A. Mechanical properties and microstructures of ultrafine-grained pure aluminum by asymmetric rolling. Scr Mater. 2009;60(10):905–8.

    Article  Google Scholar 

  42. Sun P, Kao P, Chang C. High angle boundary formation by grain subdivision in equal channel angular extrusion. Scr Mater. 2004;51(6):565–70.

    Article  Google Scholar 

  43. Sun P, Yu C, Kao P, Chang C. Microstructural characteristics of ultrafine-grained aluminum produced by equal channel angular extrusion. Scr Mater. 2002;47(6):377–81.

    Article  Google Scholar 

  44. Maizza G, Pero R, Richetta M, Montanari R. Continuous dynamic recrystallization (CDRX) model for aluminum alloys. J Mater Sci. 2018;53(6):4563–73.

    Article  Google Scholar 

  45. Kapoor R, Reddy GB, Sarkar A. Discontinuous dynamic recrystallization in α-Zr. Mater Sci Eng A. 2018;718:104–10.

    Article  Google Scholar 

  46. Lee J-C, Seok H-K, Suh J-Y. Microstructural evolutions of the Al strip prepared by cold rolling and continuous equal channel angular pressing. Acta Mater. 2002;50(16):4005–199.

    Article  Google Scholar 

  47. Kwon Y, Shigematsu I, Saito N. Mechanical properties of fine-grained aluminum alloy produced by friction stir process. Scr Mater. 2003;49(8):785–9.

    Article  Google Scholar 

  48. Hansen N, Huang X, Ueji R, Tsuji N. Structure and strength after large strain deformation. Mater Sci Eng A. 2004;387:191–4.

    Article  Google Scholar 

  49. Mohebbi M, Akbarzadeh A. Accumulative spin-bonding (ASB) as a novel SPD process for fabrication of nanostructured tubes. Mater Sci Eng A. 2010;528(1):180–8.

    Article  Google Scholar 

  50. Guduru R, Darling K, Kishore R, Scattergood R, Koch C, Murty K. Evaluation of mechanical properties using shear–punch testing. Mater Sci Eng A. 2005;395(1–2):307–14.

    Article  Google Scholar 

  51. Azimi A, Tutunchilar S, Faraji G, Givi MB. Mechanical properties and microstructural evolution during multi-pass ECAR of Al 1100–O alloy. Mater Des. 2012;42:388–94.

    Article  Google Scholar 

  52. Faraji G, Kim H. Review of principles and methods of severe plastic deformation for producing ultrafine-grained tubes. Mater Sci Technol. 2017;33(8):905–23.

    Article  Google Scholar 

  53. Krawczynska AT, Gierlotka S, Suchecki P, Setman D, Adamczyk-Cieslak B, Lewandowska M, Zehetbauer M. Recrystallization and grain growth of a nano/ultrafine structured austenitic stainless steel during annealing under high hydrostatic pressure. J Mater Sci. 2018;53(16):11823–36.

    Article  Google Scholar 

  54. Reihanian M, Ebrahimi R, Tsuji N, Moshksar M. Analysis of the mechanical properties and deformation behavior of nanostructured commercially pure Al processed by equal channel angular pressing (ECAP). Mater Sci Eng A. 2008;473(1–2):189–94.

    Article  Google Scholar 

  55. Surendarnath S, Sankaranarayanasamy K, Ravisankar B. Workability study on 99.04% pure aluminum processed by ECAP. Mater Manuf Process. 2014;29(6):691–6.

    Article  Google Scholar 

  56. Khorrami MS, Movahedi M. Microstructure evolutions and mechanical properties of tubular aluminum produced by friction stir back extrusion. Mater Des. 2015;1980–2015(65):74–9.

    Article  Google Scholar 

Download references

Funding

This study was funded by Iran National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghader Faraji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siahsarani, A., Faraji, G. Hydrostatic cyclic extrusion compression (HCEC) process; a new CEC counterpart for processing long ultrafine-grained metals. Archiv.Civ.Mech.Eng 20, 108 (2020). https://doi.org/10.1007/s43452-020-00115-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00115-0

Keywords

Navigation