Skip to main content
Log in

Temperature-gradient-driven annealing process for formation of MnBi ferromagnetic phase

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The high content of ferromagnetic phase content δ is crucial in establishing high performance of MnBi magnets, which is the potential alternative for NdFeB magnetic material in high-temperature applications. Because of the peritectic solidification, the ferromagnetic phase of as-cast MnBi alloys is low in content and always assisted with Mn and Bi phases, and therefore, δ enhancement must be done using the annealing process. Since the ferromagnetic phase of MnBi is formed only at the temperature lower than 340 °C, the isothermal low-temperature anneal can enhance δ only moderately. In this paper, the temperature-gradient-driven annealing process has been applied to accelerate the formation of the MnBi ferromagnetic phase. This annealing process is based on the advection-assisted diffusion process which allows to accelerate the formation of ferromagnetic phase and to enhance its content δ and thus the spontaneous magnetization Ms of MnBi alloys. By this annealing process at 290 °C superposed by the temperature gradient gradT = 1–3 °C/cm for 20 h, in comparison with the isothermal annealed sample, the content δ is enhanced from the value of 60.6 to 89.9 wt% resulting the Ms enhancement from 43.0 to 64.1 emu/g. The mentioned annealing process was described by using the time-dependent one-dimensional diffusion–advection equation. The obtained analytical solution allows controlling the parameters of the process. So, the temperature-gradient-driven annealing process is promising for the large-scale production of high-LTP content MnBi alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Yu-Chun, G. Giuliano, L. Andreas, Q. Fei, C. Chia-Chin, T. Thomas, K. Helmut, S. Gisela, G. Eberhard, Scripta Mater. 107, 131–135 (2015)

    Article  Google Scholar 

  2. C. Chinnasamy, M.M. Jasinski, A. Ulmer, W. Li, G. Hadjipanayis, J. Liu, IEEE Trans. Magn. 48, 3641–3643 (2012)

    Article  ADS  Google Scholar 

  3. J. Cui, J.-P. Choi, E. Polikarpov, M.E. Bowden, W. Xie, G. Li, Z. Nie, N. Zarkevich, M.J. Kramer, D. Johnson, Acta Mater. 79, 374–381 (2014)

    Article  Google Scholar 

  4. A.M. Gabay, G.C. Hadjipanayis, J. Cui, AIP Adv. 8, 056702 (2018)

    Article  ADS  Google Scholar 

  5. K. Kanari, C. Sarafidis, M. Gjoka, D. Niarchos, O. Kalogirou, J. Magn. Magn. Mater. 426, 691–697 (2017)

    Article  ADS  Google Scholar 

  6. Y. Yang, K. Jong-Woo, S. Ping-Zhan, Q. Hui-Dong, S. Yongho, W. Xinyou, P. Jihoon, L.O. Lun, W. Qiong, G. Hongliang, C. Chul-Jin, J. Alloy. Compd. 769, 813–816 (2018)

    Article  Google Scholar 

  7. K.W. Moon, K. Jeon, M. Kang, Y. Byun, J.B. Kim, H. Kim, J. Kim, IEEE Trans. Magn. 50, 1–4 (2014)

    Article  Google Scholar 

  8. P.-K. Nguyen, S. Jin, A.E. Berkowitz, J. Appl. Phys. 115, 17A756 (2014)

    Article  Google Scholar 

  9. N.V.R. Rao, A.M. Gabay, G.C. Hadjipanayis, J. Phys. D Appl. Phys. 46, 062001 (2013)

    Article  ADS  Google Scholar 

  10. N.V.R. Rao, A.M. Gabay, X. Hu, G.C. Hadjipanayis, J. Alloy. Compd. 586, 349–352 (2014)

    Article  Google Scholar 

  11. V.V. Ramakrishna, S. Kavita, R. Gautam, T. Ramesh, R. Gopalan, J. Magn. Magn. Mater. 458, 23–29 (2018)

    Article  ADS  Google Scholar 

  12. W. Xie, E. Polikarpov, J.-P. Choi, E.B. Mark, K. Sun, J. Cui, J. Magn. Magn. Mater. 680, 1–5 (2016)

    Google Scholar 

  13. J.B. Yang, Y.B. Yang, X.G. Chen, X.B. Ma, J.Z. Han, Y.C. Yang, S. Guo, A.R. Yan, Q.Z. Huang, M.M. Wu, D.F. Chen, Appl. Phys. Lett. 99, 082505 (2011)

    Article  ADS  Google Scholar 

  14. Y.B. Yang, X.G. Chen, R. Wu, J.Z. Wei, X.B. Ma, J.Z. Han, H.L. Du, S.Q. Liu, C.S. Wang, Y.C. Yang, Y. Zhang, J.B. Yang, J. Appl. Phys. 111, 07E312 (2012)

    Article  Google Scholar 

  15. D.T. Zhang, W.T. Geng, M. Yue, W.Q. Liu, J.X. Zhang, J.A. Sundararajan, Y. Qiang, J. Magn. Magn. Mater. 324, 1887–1890 (2012)

    Article  ADS  Google Scholar 

  16. Ding Kaihong, EPJ Web of Conferences, 75 (2014).

  17. K.Y. Ko, S.J. Choi, S.K. Yoon, Y.S. Kwon, J. Magn. Magn. Mater. 310, e887–e889 (2007)

    Article  ADS  Google Scholar 

  18. E. Adams, W.M. Hubbard, A.M. Syeles, J. Appl. Phys. 23, 1207–1211 (1952)

    Article  ADS  Google Scholar 

  19. V.V. Nguyen, N. Poudyal, X.B. Liu, J.P. Liu, K. Sun, M.J. Kramer, J. Cui, Mater. Res. Express 1, 036108 (2014)

    Article  ADS  Google Scholar 

  20. K. Sumin, M. Hongjae, J. Hwaebong, K. Su-Min, L. Hyun-Sook, C.Y. Haein, L. Wooyoung, J. Alloy. Compd. 708, 1245–1249 (2017)

    Article  Google Scholar 

  21. N. Poudyal, X. Liu, W. Wang, V.V. Nguyen, Y. Ma, K. Gandha, K. Elkins, J.P. Liu, K. Sun, M.J. Kramer, J. Cui, AIP Adv. 6, 056004 (2016)

    Article  ADS  Google Scholar 

  22. K. Oikawa, Y. Mitsui, K. Koyama, K. Anzai, Mater. Trans. 52, 2032–2039 (2011)

    Article  Google Scholar 

  23. V.V. Nguyen, T.X. Nguyen, J. Electron. Mater. 46, 3333–3340 (2017)

    Article  ADS  Google Scholar 

  24. T.B. Massalski, Binary alloy phase diagrams (ASM International, Materials Park, Ohio, 1990)

    Google Scholar 

  25. H.I. Yoo, B.J. Wuensch, in Transport in Nonstoichiometric Compounds. NATO ASISeries (Series B: Physics), G. Simkovich, V.S. Stubican, eds. Vol. 129 (Springer, Boston, MA, 1985) https://doi.org/10.1007/978-1-4613-2519-2_14

  26. R.M. Young, R. Mc, Pherson. J. Am. Ceram. Soc. 12, 1080–1081 (1989)

    Article  Google Scholar 

  27. M. Biesuz, V.M. Sglavo, Ceram. Int. 45, 1227–1236 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.02-2017.327.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vuong Van Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.X., Van Nguyen, V. Temperature-gradient-driven annealing process for formation of MnBi ferromagnetic phase. Appl. Phys. A 126, 784 (2020). https://doi.org/10.1007/s00339-020-03956-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03956-x

Keywords

Navigation