Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 9, 2020

A retrospective on MXene-based composites for solar fuel production

  • Yisong Zhu

    Yisong Zhu is pursuing his master’s degree under the supervision of Prof. Nan Zhang at Hunan University, PR China. His research interests are in the fabrication of MXene-based composites and their applications in heterogeneous photocatalysis.

    , Zhenjun Wu , Xiuqiang Xie EMAIL logo and Nan Zhang

    Nan Zhang is now a professor at the College of Materials Science and Engineering at Hunan University. Her main research interests include the design and controlled synthesis of composites towards photocatalytic applications and their mechanism investigations. She is an awardee of the 2017 IUPAC-Solvay International Award for Young Chemists.

    ORCID logo EMAIL logo

Abstract

MXene with two-dimensional layered structure and desirable electronic properties has emerged as a promising candidate to construct MXene-based composites towards various photocatalytic applications. As compared to the downhill-type photodegradation reactions, artificial photosynthesis often involves thermodynamic uphill reactions with a large positive change in Gibbs free energy. Recent years have witnessed the effectiveness of MXene in enhancing the photoactivity of MXene-based composites for solar fuel synthesis. In this review, we mainly focus on the applications of MXene-based composites for photocatalytic solar fuel production. We will start from summarizing the general synthesis of MXene-based composite photocatalysts. Then the recent progress on MXene-based composite photocatalysts for solar fuel synthesis, including water splitting for H2 production, CO2 reduction to solar fuels, and N2 fixation for NH3 synthesis is elucidated. The roles of MXene playing in improving the photoactivity of MXene-based composites in these applications have also been discussed. In the last section, perspectives on the future research directions of MXene-based composites towards the applications of artificial photosynthesis are presented.


Corresponding authors: Xiuqiang Xie and Nan Zhang, College of Materials Science and Engineering, Hunan University, Changsha, 410082, PR China, e-mail: ;

Article note: A collection of peer-reviewed articles by past winners of the IUPAC and IUPAC-SOLVAY International Award for Young Chemists to celebrate the 60th anniversary of Pure and Applied Chemistry.


Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 51802040, 51977071, and 21802020

Funding source: Fundamental Research Funds for the Central Universities

Funding source: Natural Science Foundation of Hunan Province

Award Identifier / Grant number: 2020JJ4192 and 2020JJ3004

Funding source: Open Research Project of Key Laboratory of Coal to Ethylene Glycol and Its Related Technology

Funding source: Chinese Academy of Sciences

Award Identifier / Grant number: 201901

About the authors

Yisong Zhu

Yisong Zhu is pursuing his master’s degree under the supervision of Prof. Nan Zhang at Hunan University, PR China. His research interests are in the fabrication of MXene-based composites and their applications in heterogeneous photocatalysis.

Nan Zhang

Nan Zhang is now a professor at the College of Materials Science and Engineering at Hunan University. Her main research interests include the design and controlled synthesis of composites towards photocatalytic applications and their mechanism investigations. She is an awardee of the 2017 IUPAC-Solvay International Award for Young Chemists.

  1. Research funding: This research was supported by the National Natural Science Foundation of China (51802040, 51977071, and 21802020), the Fundamental Research Funds for the Central Universities, the Natural Science Foundation of Hunan Province (2020JJ4192 and 2020JJ3004), and the Open Research Project of Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Chinese Academy of Sciences (No. 201901).

References

[1] P. D. Tran, L. H. Wong, J. Barber, J. S. C. Loo. Energy Environ. Sci.5, 5902 (2012), https://doi.org/10.1039/c2ee02849b.Search in Google Scholar

[2] S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk. Angew. Chem. Int. Ed.52, 7372 (2013), https://doi.org/10.1002/anie.201207199.Search in Google Scholar PubMed

[3] N. S. Lewis, D. G. Nocera. Proc. Natl. Acad. Sci. U.S.A.103, 15729 (2006), https://doi.org/10.1073/pnas.0603395103.Search in Google Scholar PubMed PubMed Central

[4] S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, J. Tang. Energy Environ. Sci.8, 731 (2015), https://doi.org/10.1039/c4ee03271c.Search in Google Scholar

[5] J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Patrocinio, N. Y. Murakami Iha, J. L. Templeton, T. J. Meyer. Acc. Chem. Res.42, 1954 (2009), https://doi.org/10.1021/ar9001526.Search in Google Scholar PubMed

[6] S. Berardi, S. Drouet, L. Francàs, C. Gimbert-Suriñach, M. Guttentag, C. Richmond, T. Stoll, A. Llobet. Chem. Soc. Rev.43, 7501 (2014), https://doi.org/10.1039/c3cs60405e.Search in Google Scholar PubMed

[7] A. J. Bard, M. A. Fox. Acc. Chem. Res.28, 141 (1995), https://doi.org/10.1021/ar00051a007.Search in Google Scholar

[8] Q. Xiang, B. Cheng, J. Yu. Angew. Chem. Int. Ed.54, 11350 (2015), https://doi.org/10.1002/anie.201411096.Search in Google Scholar PubMed

[9] L. Yuan, Y.-J. Xu. Appl. Surf. Sci.342, 154 (2015), https://doi.org/10.1016/j.apsusc.2015.03.050.Search in Google Scholar

[10] S. Xie, Q. Zhang, G. Liu, Y. Wang. Chem. Commun.52, 35 (2016), https://doi.org/10.1039/c5cc07613g.Search in Google Scholar PubMed

[11] J. C. Colmenares, Y.-J. Xu (Eds.). Heterogeneous Photocatalysis. Springer, Berlin, Heidelberg (2016).10.1007/978-3-662-48719-8Search in Google Scholar

[12] J. Li, H. Li, G. Zhan, L. Zhang. Acc. Chem. Res.50, 112 (2017), https://doi.org/10.1021/acs.accounts.6b00523.Search in Google Scholar PubMed

[13] J. Yang, Y. Guo, W. Lu, R. Jiang, J. Wang. Adv. Mater.30, 1802227 (2018), https://doi.org/10.1002/adma.201802227.Search in Google Scholar PubMed

[14] J. Albero, Y. Peng, H. García. ACS Catal.10, 5734 (2020), https://doi.org/10.1021/acscatal.0c00478.Search in Google Scholar

[15] Y. Huang, N. Zhang, Z. Wu, X. Xie. J. Mater. Chem. A8, 4978 (2020), https://doi.org/10.1039/c9ta13589h.Search in Google Scholar

[16] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum. Adv. Mater.23, 4248 (2011), https://doi.org/10.1002/adma.201102306.Search in Google Scholar PubMed

[17] H. Wang, Y. Wu, X. Yuan, G. Zeng, J. Zhou, X. Wang, J. W. Chew. Adv. Mater.30, 1704561 (2018), https://doi.org/10.1002/adma.201704561.Search in Google Scholar PubMed

[18] M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi. Adv. Mater.26, 992 (2014), https://doi.org/10.1002/adma.201304138.Search in Google Scholar PubMed

[19] X. Xie, Z. Wu, N. Zhang. Chin. Chem. Lett.31, 1014 (2020).10.1016/j.cclet.2019.10.012Search in Google Scholar

[20] J. Peng, X. Chen, W.-J. Ong, X. Zhao, N. Li. Chemistry5, 18 (2019), https://doi.org/10.1016/j.chempr.2018.08.037.Search in Google Scholar

[21] Z. Li, Y. Wu. Small15, 1804736 (2019), https://doi.org/10.1002/smll.201804736.Search in Google Scholar PubMed

[22] J. Pang, R. G. Mendes, A. Bachmatiuk, L. Zhao, H. Q. Ta, T. Gemming, H. Liu, Z. Liu, M. H. Rummeli. Chem. Soc. Rev.48, 72 (2019), https://doi.org/10.1039/c8cs00324f.Search in Google Scholar PubMed

[23] L. Cheng, X. Li, H. Zhang, Q. Xiang. J. Phys. Chem. Lett.10, 3488 (2019), https://doi.org/10.1021/acs.jpclett.9b00736.Search in Google Scholar PubMed

[24] V.-H. Nguyen, B.-S. Nguyen, C. Hu, C. C. Nguyen, D. L. T. Nguyen, M. T. Nguyen Dinh, D.-V. N. Vo, Q. T. Trinh, M. Shokouhimehr, A. Hasani, S. Y. Kim, Q. V. Le. Nanomaterials10, 602 (2020), https://doi.org/10.3390/nano10040602.Search in Google Scholar PubMed PubMed Central

[25] J. Chen, Q. Huang, H. Huang, L. Mao, M. Liu, X. Zhang, Y. Wei. Nanoscale12, 3574 (2020), https://doi.org/10.1039/c9nr08542d.Search in Google Scholar PubMed

[26] H. L. Tan, R. Amal, Y. H. Ng. J. Mater. Chem. A5, 16498 (2017), https://doi.org/10.1039/c7ta04441k.Search in Google Scholar

[27] C. Ling, Y. Ouyang, Q. Li, X. Bai, X. Mao, A. Du, J. Wang. Small Methods3, 1800376 (2019), https://doi.org/10.1002/smtd.201800376.Search in Google Scholar

[28] B.-M. Jun, S. Kim, J. Heo, C. M. Park, N. Her, M. Jang, Y. Huang, J. Han, Y. Yoon. Nano Res.12, 471 (2019), https://doi.org/10.1007/s12274-018-2225-3.Search in Google Scholar

[29] Y. Sun, X. Meng, Y. Dall’Agnese, C. Dall’Agnese, S. Duan, Y. Gao, G. Chen, X.-F. Wang. Nano Micro Lett.11, 79 (2019), https://doi.org/10.1007/s40820-019-0309-6.Search in Google Scholar PubMed PubMed Central

[30] X. Zhan, C. Si, J. Zhou, Z. Sun. Nanoscale Horiz.5, 235 (2020), https://doi.org/10.1039/c9nh00571d.Search in Google Scholar

[31] X. Xie, N. Zhang. Adv. Funct. Mater. (2020), https://doi.org/10.1002/adfm.202002528.Search in Google Scholar

[32] C. J. Zhang, S. Pinilla, N. McEvoy, C. P. Cullen, B. Anasori, E. Long, S.-H. Park, A. Seral-Ascaso, A. Shmeliov, D. Krishnan, C. Morant, X. Liu, G. S. Duesberg, Y. Gogotsi, V. Nicolosi. Chem. Mater.29, 4848 (2017), https://doi.org/10.1021/acs.chemmater.7b00745.Search in Google Scholar

[33] O. Mashtalir, K. M. Cook, V. N. Mochalin, M. Crowe, M. W. Barsoum, Y. Gogotsi. J. Mater. Chem. A2, 14334 (2014), https://doi.org/10.1039/c4ta02638a.Search in Google Scholar

[34] H. Wang, Y. Sun, Y. Wu, W. Tu, S. Wu, X. Yuan, G. Zeng, Z. J. Xu, S. Li, J. W. Chew. Appl. Catal. B245, 290 (2019), https://doi.org/10.1016/j.apcatb.2018.12.051.Search in Google Scholar

[35] J. Ran, G. Gao, F.-T. Li, T.-Y. Ma, A. Du, S.-Z. Qiao. Nat. Commun.8, 13907 (2017), https://doi.org/10.1038/ncomms13907.Search in Google Scholar PubMed PubMed Central

[36] Y.-H. Li, F. Zhang, Y. Chen, J.-Y. Li, Y.-J. Xu. Green Chem.22, 163 (2020), https://doi.org/10.1039/c9gc03332g.Search in Google Scholar

[37] L. Tie, S. Yang, C. Yu, H. Chen, Y. Liu, S. Dong, J. Sun, J. Sun. J. Colloid Interface Sci.545, 63 (2019), https://doi.org/10.1016/j.jcis.2019.03.014.Search in Google Scholar PubMed

[38] L. Cheng, Q. Chen, J. Li, H. Liu. Appl. Catal. B267, 118379 (2020), https://doi.org/10.1016/j.apcatb.2019.118379.Search in Google Scholar

[39] Y. Zhao, G. Zuo, Y. Wang, W. L. Teo, A. Xie, Y. Guo, Y. Dai, W. Zhou, D. Jana, Q. Xian, W. Dong. Angew. Chem. Int. Ed.59, 11287 (2020).10.1002/anie.202002136Search in Google Scholar PubMed

[40] C. Liu, Q. Xu, Q. Zhang, Y. Zhu, M. Ji, Z. Tong, W. Hou, Y. Zhang, J. Xu. J. Mater. Sci.54, 2458 (2019), https://doi.org/10.1007/s10853-018-2990-0.Search in Google Scholar

[41] W. Lian, L. Wang, X. Wang, C. Shen, A. Zhou, Q. Hu. Funct. Mater. Lett.12, 1850100 (2019), https://doi.org/10.1142/s179360471850100x.Search in Google Scholar

[42] A. Pan, X. Ma, S. Huang, Y. Wu, M. Jia, Y. Shi, Y. Liu, P. Wangyang, L. He, Y. Liu. J. Phys. Chem. Lett.10, 6590 (2019), https://doi.org/10.1021/acs.jpclett.9b02605.Search in Google Scholar PubMed

[43] H. Wang, R. Peng, Z. D. Hood, M. Naguib, S. P. Adhikari, Z. Wu. ChemSusChem9, 1490 (2016), https://doi.org/10.1002/cssc.201600165.Search in Google Scholar PubMed

[44] R. Chen, P. Wang, J. Chen, C. Wang, Y. Ao. Appl. Surf. Sci.473, 11 (2019).10.1016/j.apsusc.2018.12.071Search in Google Scholar

[45] Y. Gao, L. Wang, A. Zhou, Z. Li, J. Chen, H. Bala, Q. Hu, X. Cao. Mater. Lett.150, 62 (2015), https://doi.org/10.1016/j.matlet.2015.02.135.Search in Google Scholar

[46] B. Li, S. Liu, C. Lai, G. Zeng, M. Zhang, M. Zhou, D. Huang, L. Qin, X. Liu, Z. Li, N. An, F. Xu, H. Yi, Y. Zhang, L. Chen. Appl. Catal. B266, 118650 (2020).10.1016/j.apcatb.2020.118650Search in Google Scholar

[47] H. Feng, W. Wang, M. Zhang, S. Zhu, Q. Wang, J. Liu, S. Chen. Appl. Catal. B266, 118609 (2020), https://doi.org/10.1016/j.apcatb.2020.118609.Search in Google Scholar

[48] J. Qin, X. Hu, X. Li, Z. Yin, B. Liu, K.-H. Lam. Nano Energy61, 27 (2019), https://doi.org/10.1016/j.nanoen.2019.04.028.Search in Google Scholar

[49] D. Ruan, M. Fujitsuka, T. Majima. Appl. Catal. B264, 118541 (2020), https://doi.org/10.1016/j.apcatb.2019.118541.Search in Google Scholar

[50] C. Cui, R. Guo, H. Xiao, E. Ren, Q. Song, C. Xiang, X. Lai, J. Lan, S. Jiang. Appl. Surf. Sci.505, 144595 (2020), https://doi.org/10.1016/j.apsusc.2019.144595.Search in Google Scholar

[51] Q. Huang, Y. Liu, T. Cai, X. Xia. J. Photochem. Photobiol. A375, 201 (2019).10.1016/j.jphotochem.2019.02.026Search in Google Scholar

[52] X. Xie, N. Zhang, Z.-R. Tang, M. Anpo, Y.-J. Xu. Appl. Catal. B237, 43 (2018), https://doi.org/10.1016/j.apcatb.2018.05.070.Search in Google Scholar

[53] R. Lotfi, M. Naguib, D. E. Yilmaz, J. Nanda, A. C. T. van Duin. J. Mater. Chem. A6, 12733 (2018), https://doi.org/10.1039/c8ta01468j.Search in Google Scholar

[54] Z. Zou, J. Ye, K. Sayama, H. Arakawa. Nature414, 625 (2001), https://doi.org/10.1038/414625a.Search in Google Scholar PubMed

[55] A. El-Sayed, N. Atef, A. H. Hegazy, K. R. Mahmoud, R. M. A. Hameed, N. K. Allam. Sol. Energy144, 445 (2017), https://doi.org/10.1016/j.solener.2017.01.056.Search in Google Scholar

[56] J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming. J. Electrochem. Soc.152, J23 (2005).10.1149/1.1856988Search in Google Scholar

[57] B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov. J. Am. Chem. Soc.127, 5308 (2005), https://doi.org/10.1021/ja0504690.Search in Google Scholar PubMed

[58] J. Bonde, P. G. Moses, T. F. Jaramillo, J. K. Nørskov, I. Chorkendorff. Faraday Discuss.140, 219 (2009), https://doi.org/10.1039/b803857k.Search in Google Scholar PubMed

[59] S. C. Roy, O. K. Varghese, M. Paulose, C. A. Grimes. ACS Nano4, 1259 (2010), https://doi.org/10.1021/nn9015423.Search in Google Scholar PubMed

[60] L. Hao, L. Kang, H. Huang, L. Ye, K. Han, S. Yang, H. Yu, M. Batmunkh, Y. Zhang, T. Ma. Adv. Mater.31, 1900546 (2019), https://doi.org/10.1002/adma.201900546.Search in Google Scholar PubMed

[61] M. Ye, X. Wang, E. Liu, J. Ye, D. Wang. ChemSusChem11, 1606 (2018), https://doi.org/10.1002/cssc.201800083.Search in Google Scholar PubMed

[62] X. Zhang, Z. Zhang, J. Li, X. Zhao, D. Wu, Z. Zhou. J. Mater. Chem. A5, 12899 (2017), https://doi.org/10.1039/c7ta03557h.Search in Google Scholar

[63] S. Cao, B. Shen, T. Tong, J. Fu, J. Yu. Adv. Funct. Mater.28, 1800136 (2018), https://doi.org/10.1002/adfm.201800136.Search in Google Scholar

[64] C. Yang, Q. Tan, Q. Li, J. Zhou, J. Fan, B. Li, J. Sun, K. Lv. Appl. Catal. B268, 118738 (2020), https://doi.org/10.1016/j.apcatb.2020.118738.Search in Google Scholar

[65] S. Wang, M. Xu, T. Peng, C. Zhang, T. Li, I. Hussain, J. Wang, B. Tan. Nat. Commun.10, 676 (2019), https://doi.org/10.1038/s41467-019-08651-x.Search in Google Scholar PubMed PubMed Central

[66] H. Pan, J. A. Ritter, P. B. Balbuena. Langmuir14, 6323 (1998), https://doi.org/10.1021/la9803373.Search in Google Scholar

[67] Y. Xia, Z. Tian, T. Heil, A. Meng, B. Cheng, S. Cao, J. Yu, M. Antonietti. Joule3, 2792 (2019), https://doi.org/10.1016/j.joule.2019.08.011.Search in Google Scholar

[68] D. V. Yandulov, R. R. Schrock. Science301, 76 (2003), https://doi.org/10.1126/science.1085326.Search in Google Scholar PubMed

[69] L. Wang, M. Xia, H. Wang, K. Huang, C. Qian, C. T. Maravelias, G. A. Ozin. Joule2, 1055 (2018), https://doi.org/10.1016/j.joule.2018.04.017.Search in Google Scholar

[70] C. H. Christensen, T. Johannessen, R. Z. Sørensen, J. K. Nørskov. Catal. Today111, 140 (2006), https://doi.org/10.1016/j.cattod.2005.10.011.Search in Google Scholar

[71] M. Li, H. Huang, J. Low, C. Gao, R. Long, Y. Xiong. Small Methods3, 1800388 (2019), https://doi.org/10.1002/smtd.201800388.Search in Google Scholar

[72] A. J. Medford, M. C. Hatzell. ACS Catal.7, 2624 (2017), https://doi.org/10.1021/acscatal.7b00439.Search in Google Scholar

[73] X. Chen, N. Li, Z. Kong, W.-J. Ong, X. Zhao. Mater. Horiz.5, 9 (2018), https://doi.org/10.1039/c7mh00557a.Search in Google Scholar

[74] R. Shi, Y. Zhao, G. I. N. Waterhouse, S. Zhang, T. Zhang. ACS Catal.9, 9739 (2019).10.1021/acscatal.9b03246Search in Google Scholar

[75] Y. Liao, J. Qian, G. Xie, Q. Han, W. Dang, Y. Wang, L. Lv, S. Zhao, L. Luo, W. Zhang, H.-Y. Jiang, J. Tang. Appl. Catal. B273, 119054 (2020), https://doi.org/10.1016/j.apcatb.2020.119054.Search in Google Scholar

[76] T. Hou, Q. Li, Y. Zhang, W. Zhu, K. Yu, S. Wang, Q. Xu, S. Liang, L. Wang. Appl. Catal. B273, 119072 (2020), https://doi.org/10.1016/j.apcatb.2020.119072.Search in Google Scholar

[77] L. M. Azofra, N. Li, D. R. MacFarlane, C. Sun. Energy Environ. Sci.9, 2545 (2016), https://doi.org/10.1039/c6ee01800a.Search in Google Scholar

[78] J. Wan, W. Chen, C. Jia, L. Zheng, J. Dong, X. Zheng, Y. Wang, W. Yan, C. Chen, Q. Peng, D. Wang, Y. Li. Adv. Mater.30, 1705369 (2018), https://doi.org/10.1002/adma.201705369.Search in Google Scholar PubMed

[79] Q. Tang, Z. Zhou, P. Shen. J. Am. Chem. Soc.134, 16909 (2012), https://doi.org/10.1021/ja308463r.Search in Google Scholar PubMed

[80] Z. Zeng, Y. Yan, J. Chen, P. Zan, Q. Tian, P. Chen. Adv. Funct. Mater.29, 1806500 (2019), https://doi.org/10.1002/adfm.201806500.Search in Google Scholar

[81] N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, Y.-J. Xu. Chem. Rev.115, 10307 (2015), https://doi.org/10.1021/acs.chemrev.5b00267.Search in Google Scholar PubMed

[82] V. Mauchamp, M. Bugnet, E. P. Bellido, G. A. Botton, P. Moreau, D. Magne, M. Naguib, T. Cabioc’h, M. W. Barsoum. Phys. Rev. B89, 235428 (2014), https://doi.org/10.1103/physrevb.89.235428.Search in Google Scholar

[83] D. B. Velusamy, J. K. El-Demellawi, A. M. El-Zohry, A. Giugni, S. Lopatin, M. N. Hedhili, A. E. Mansour, E. D. Fabrizio, O. F. Mohammed, H. N. Alshareef. Adv. Mater.31, 1807658 (2019), https://doi.org/10.1002/adma.201807658.Search in Google Scholar PubMed

[84] K. Hantanasirisakul, Y. Gogotsi. Adv. Mater.30, 1804779 (2018), https://doi.org/10.1002/adma.201804779.Search in Google Scholar PubMed

[85] M. Khazaei, A. Ranjbar, M. Arai, S. Yunoki. Phys. Rev. B94, 125152 (2016), https://doi.org/10.1103/physrevb.94.125152.Search in Google Scholar

[86] C. Si, J. Zhou, Z. Sun. ACS Appl. Mater. Interfaces7, 17510 (2015), https://doi.org/10.1021/acsami.5b05401.Search in Google Scholar PubMed

Published Online: 2020-09-09
Published in Print: 2020-12-16

© 2020 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Downloaded on 13.5.2024 from https://www.degruyter.com/document/doi/10.1515/pac-2020-0704/html
Scroll to top button