Skip to main content
Log in

Exciting Wavelength and Concentration Related Two-Photon Fluorescence of Single and Mixed Laser Dyes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Two-photon nonlinear process induced fluorescence of Rhodamine 6G (R6G), Rhodamine B (RB), and their mixed aqueous solutions in mass proportion of 1:1, is experimentally observed by different exciting wavelengths. It shows that, for each sample, the exciting wavelength can influence the fluorescence intensity considerably but only slightly influence the peak wavelength of the spectrum. The optimal exciting wavelengths of R6G and the mixed dyes are around 700 nm. While for RB, the optimal exciting wavelengths can be 700 nm and 620 nm. For each dye sample, the spectral red-shift will occur as increase of the solution concentration. The mixing of the two dyes will cause the spectral red-shift with regard to the single dye under our experimental conditions. Moreover, in comparison, at lower concentrations, the mixed dye has relatively intense fluorescence. This work is of significance for determining the optimal exciting wavelength and developing the tunable two-photon dye lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu YS, Fu Y, Badugu R, Lakowicz JR, Xu XL (2012) Nanoscaled ZnO films used as enhanced substrates for fluorescence detection of dyes. Chin Phys B 21:037803. https://doi.org/10.1088/1674-1056/21/3/037803

    Article  CAS  Google Scholar 

  2. Cai L, Fan JZ, Kong XP, Lin LL, Wang CK (2017) Luminescent properties of thermally activated delayed fluorescence molecule with intramolecular π–π interaction between donor and acceptor. Chin Phys B 26:118503. https://doi.org/10.1088/1674-1056/26/11/118503

    Article  CAS  Google Scholar 

  3. Liu Y, Song CY, LUO XS, Lu J, Ni XW (2007) Fluorescence spectrum characteristic of ethanol-water excimer and mechanism of resonance energy transfer. Chin Phys 16:1300–1306. https://doi.org/10.1088/1009-1963/16/5/023

    Article  CAS  Google Scholar 

  4. Yao GX, Lv LH, Gui MF, Zhang XY, Zheng XF, Ji XH, Zhang H, Cui ZF (2012) Investigation of ultrafast dynamics of CdTe quantum dots by femtosecond fuorescence up-conversion spectroscopy. Chin Phys B 10:107801. https://doi.org/10.1088/1674-1056/21/10/107801

    Article  CAS  Google Scholar 

  5. Vogel R, Meredith P, Harvey MD, Rubinsztein-Dunlop H (2004) Absorption and fluorescence spectroscopy of rhodamine 6G in titanium dioxide nanocomposites. Spectrochim Acta A 60:245–249. https://doi.org/10.1016/s1386-1425(03)00218-x

    Article  CAS  Google Scholar 

  6. Shuai ZG, Liu WJ, Liang WZ, Shi Q, Chen H (2013) Theoretical study of the low-lying electronic excited states for molecular aggregates. Sci China Chem 56:1258–1262. https://doi.org/10.1007/s11426-013-4906-9

    Article  CAS  Google Scholar 

  7. Kristoffersen AS, Erga SR, Hamre B, Frette O (2014) Testing fluorescence lifetime standards using two-photon excitation and time-domain instrumentation: rhodamine B, coumarin 6 and lucifer yellow. J Fluoresc 24:1015–1024. https://doi.org/10.1007/s10895-014-1368-1

    Article  CAS  Google Scholar 

  8. Li MY, Li F, He ZC, Zhang JP, Han JB, Lu PX (2014) Two-photon-excited fluorescence resonance energy transfer in an aqueous system of CdTe quantum dots and rhodamine B. J Appl Phys 116:233106. https://doi.org/10.1063/1.4904356

    Article  CAS  Google Scholar 

  9. Parsanasab G, Moshkani M, Gharavi A (2015) Femtosecond laser direct writing of single mode polymer micro ring laser with high stability and low pumping threshold. Opt Express 23:8310–8316. https://doi.org/10.1364/OE.23.008310

    Article  CAS  Google Scholar 

  10. Gerosa RM, Sudirman A, Menezes LDS, Margulis W, Matos CJSD (2015) All-fiber high repetition rate microfluidic dye laser. Optica 2:186–193. https://doi.org/10.1364/OPTICA.2.000186

    Article  CAS  Google Scholar 

  11. Lu ZZ, Sun YL, Ma L, Liu JF (2015) Tunable ultraviolet co-doped dye laser of Pyrromethene 597 and Rhodamine 610. Laser Phys 25:125802. https://doi.org/10.1088/1054-660X/25/12/125802

    Article  Google Scholar 

  12. Sagoo SK, Jockusch RA (2011) The fluorescence properties of cationic rhodamine B in the gas phase. J Photoch Photobio A 220:173–178. https://doi.org/10.1016/j.jphotochem.2011.04.008

    Article  CAS  Google Scholar 

  13. Vogel R, Harvey M, Edwards G, Meredith P, Heckenberg N, Trau M, Rubinsztein-Dunlop H (2002) Dimer-to-monomer transformation of rhodamine 6G in aqueous peo-ppo-peo block copolymer solutions. Macromolecules 35:2063–2070. https://doi.org/10.1021/ma010995l

    Article  CAS  Google Scholar 

  14. Tajalli H, Ghanadzadeh Gilania A, Zakerhamidia MS, Moghadam M (2009) Effects of surfactants on the molecular aggregation of rhodamine dyes in aqueous solutions. Spectrochim Acta A 72:697–702. https://doi.org/10.1016/j.saa.2008.09.033

    Article  CAS  Google Scholar 

  15. Zehentbauer FM, Moretto C, Stephen R, ThevarT GJR, Pokrajac D, Richard KL, Kiefer J (2014) Fluorescence spectroscopy of rhodamine 6G: concentration and solvent effects. Spectrochim Acta A 121:147–151. https://doi.org/10.1016/j.saa.2013.10.062

    Article  CAS  Google Scholar 

  16. Terdale S, Tantray A (2017) Spectroscopic study of the dimerization of rhodamine 6G in water and different organic solvents. J Mol Liq 225:662–671. https://doi.org/10.1016/j.molliq.2016.10.090

    Article  CAS  Google Scholar 

  17. Barzan M, Hajiesmaeilbaigi F (2018) Investigation the concentration effect on the absorption and fluorescence properties of rhodamine 6G dye. Optik 159:157–161. https://doi.org/10.1016/j.ijleo.2018.01.075

    Article  CAS  Google Scholar 

  18. Setiawan D, Kazaryan A, Martoprawirob MA, Filatov M (2010) A first principles study of fluorescence quenching in rhodamine B dimers: how can quenching occur in dimeric species. Phys Chem Chem Phys 12:11238–11244. https://doi.org/10.1039/C004573J

    Article  CAS  Google Scholar 

  19. Mavila JTK, Mandamparambil R, Kumar N, Cheriyan PA, Vadakkedathu NPN, Padmanabhan R (2007) Laser emission from dye mixture doped polymer optical fiber. Proc of SPIE 6698. https://doi.org/10.1117/12.732823

  20. Sheeba M, Thomas KJ, Rajesh M, Nampoori VPN, Vallabhan CPG, Radhakrishnan P (2007) Multimode laser emission from dye doped polymer optical fiber. Appl Opt 46:8089–8094. https://doi.org/10.1364/AO.46.008089

    Article  CAS  Google Scholar 

  21. Dvornikov AS, Walker EP, Rentzepis PM (2009) Two-photon three-dimensional optical storage memory. J Phys Chem A 113:13633–13644. https://doi.org/10.1021/jp905655z

    Article  CAS  Google Scholar 

  22. Day D, Gu M, Smallridge A (1999) Use of two-photon excitation for erasable–rewritable three-dimensional bit optical data storage in a photorefractive polymer. Opt Lett 24:948–950. https://doi.org/10.1364/OL.24.000948

    Article  CAS  Google Scholar 

  23. Gu M, Bird D (2003) Three-dimensional optical-transfer-function analysis of fiber-optical two-photon fluorescence microscopy. J Opt Soc Am A 20:941–947. https://doi.org/10.1364/JOSAA.20.000941

    Article  Google Scholar 

  24. Debarre D, Botcherby EJ, Watanabe T, Srinivas SM, Booth J, Wilson T (2009) Image-based adaptive optics for two-photon microscopy. Opt Lett 34:2495–2497. https://doi.org/10.1364/OL.34.002495

    Article  Google Scholar 

  25. Kauert M, Stoller PC, Frenz M, Ricka J (2006) Absolute measurement of molecular two-photon absorption cross-sections using a fluorescence saturation technique. Opt Express 14:8434–8447. https://doi.org/10.1364/OE.14.008434

    Article  CAS  Google Scholar 

  26. Maurya SK, Dutta C, Goswami D (2017) Concentration dependent approach for accurate determination of two-photon absorption cross-section of fluorescent dye molecule. J Fluoresc 27:1399–1403. https://doi.org/10.1007/s10895-017-2076-4

    Article  CAS  Google Scholar 

  27. Sathy P, Philip R, Nampoori VPN, Vallabhan CPG (1990) Observation of two-photon absorption in rhodamine 6G using photoacoustic technique. Opt Commun 74:313–317. https://doi.org/10.1016/0030-4018(90)90390-f

    Article  CAS  Google Scholar 

  28. Maurya SK, Yadav D, Goswami D (2016) Investigating two-photon-induced fluorescence in rhodamine-6G in presence of cetyl-trimethyl-ammonium-bromide. J Fluoresc 26:1573–1577. https://doi.org/10.1007/s10895-016-1841-0

    Article  CAS  Google Scholar 

  29. Nag A, Goswami D (2009) Solvent effect on two-photon absorption and fluorescence of rhodamine dyes. J Photoch Photobio A 206:188–197. https://doi.org/10.1016/j.jphotochem.2009.06.007

    Article  CAS  Google Scholar 

  30. Zhou ZQ, Lu CG, Cui YP (2013) Influences of aggregation on the two-photon fluorescence process. J Nonlinear Opt Phys 22:1350011. https://doi.org/10.1142/S0218863513500112

    Article  CAS  Google Scholar 

  31. Bindhudag CV, Harilaldag SS, Nampoori VPN, Vallabhan CPG (1999) Studies of nonlinear absorption and aggregation in aqueous solutions of rhodamine 6G using a transient thermal lens technique. J Phys D Appl Phys 32:407–411. https://doi.org/10.1088/0022-3727/32/4/009

    Article  Google Scholar 

  32. Makarov NS, Drobizhev M, Rebane A (2008) Two-photon absorption standards in the 550-1600 nm excitation wavelength range. Opt Express 6:4029–4047. https://doi.org/10.1364/OE.16.004029

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Major Project of Educational Department of Sichuan Province in China (No. 13ZA0081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianqiong Zhong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhong, X. & Xu, J. Exciting Wavelength and Concentration Related Two-Photon Fluorescence of Single and Mixed Laser Dyes. J Fluoresc 30, 1431–1437 (2020). https://doi.org/10.1007/s10895-019-02463-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02463-4

Keywords

Navigation