Skip to main content
Log in

Synergistic Action of Alkalis Improve the Quality Hemicellulose Extraction from Sugarcane Bagasse for the Production of Xylooligosaccharides

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The present study demonstrates an effective alkaline protocol for the extraction of quality hemicellulose using NaOH and NH4OH combination from sugarcane bagasse for the production of xylooligosaacharides (XOs). For achieving maximum recovery of hemicellulose, the statistical optimization technique was adapted, while considering alkali concentration and temperature, as important process parameters, for all of the alkaline tested protocols like individual or mixed alkalis. The comparative study exposed that mixed alkalis promoted higher recovery of hemicellulose (68% wt xylose), which is relatively higher (up to 1.3-times) than the individual alkali protocols, such that it contained predominantly the xylose (xyl/ara ratio was 3.94) in the form of xylan. In perception, the synergistic action of different alkalis (weak and strong bases) have strongly influenced the selective cleavage of lignin-carbohydrate linkages, thereby enabling the higher release of hemicellulose under the modest reaction conditions (10% alkali conc. and 120 °C). Moreover, the analytical characterization witnessed that it is composed of majorly xylose with less or no undesired residual biomass constituents, including lignin. Upon evaluating the resultant hemicelluloses for XOs production via acidic hydrolysis, the hemicellulose obtained through the mixed alkalis protocol exhibited exceptional, resulting  in ~ 13% wt XOs yield with a high degree of polymerization (2–4 units); it is relatively ~ 2.8-times higher than the result of other hemicelluloses. In addition, the formation of gaseous ammonia during the reaction of the mixed alkalis could potentially contribute to the reduction of overall processing cost through recovery and reuse strategy during the large-scale XOs production.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Betancur, G.J.V., Pereira, N.J.: Sugarcane bagasse as feedstock for second generation ethanol production. Part 1: diluted acid pretreatment optimization. Electron. J. Biotechn. 13, 1–9 (2010)

    Google Scholar 

  2. Peng, F., Ren, J.L., Xu, F., Bian, J., Peng, P., Sun, R.C.: Fractional studies of alkali soluble hemicelluloses obtained by graded ethanol precipitation from sugar cane bagasse. J. Agric. Food Chem. 58(3), 1768–1776 (2010)

    Article  Google Scholar 

  3. Pandey, A., Soccol, C.R., Nigam, P., Soccol, V.T.: Biotechnological potential of agro industrial residues: I. Sugarcane bagasse. Bioresour. Technol. 74(1), 69–80 (2000)

    Article  Google Scholar 

  4. Takkellapati, S., Li, T., Gonzalez, M.A.: An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technol. Environ. 20, 1615–1630 (2018)

    Article  Google Scholar 

  5. Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., Lee, Y.Y.: Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 96(18), 1959–1966 (2005)

    Article  Google Scholar 

  6. Huang, C., Wang, X., Liang, C., Jiang, X., Yang, G., Xu, J., Yong, Q.: A sustainable process for procuring biologically active fractions of high-purity xylooligosaccharides and water-soluble lignin from Moso bamboo prehydrolyzate. Biotechnol. Biofuels 12, 189 (2019)

    Article  Google Scholar 

  7. Moura, A., Gullon, P., Dominia, H., Parajo, J.C.: Advances in the manufacturer, purification and application of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem. 41(9), 1913–1923 (2006)

    Article  Google Scholar 

  8. Terrett, O.M., Dupree, P.: Covalent interactions between lignin and hemicelluloses in plant secondary cell walls. Curr. Opin. Biotech. 56, 97–104 (2019)

    Article  Google Scholar 

  9. Xiao, B., Sun, X., Sun, R.: Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym. Degrad. Stabil. 74(2), 307–319 (2001)

    Article  Google Scholar 

  10. Peng, F., Ren, J.L., Xu, F., Bian, J., Peng, P., Sun, R.C.: Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J. Agric. Food Chem. 57(14), 6305–6317 (2009)

    Article  Google Scholar 

  11. Bian, J., Peng, F., Peng, X., Xu, F., Sun, R., Kennedy, J.F.: Isolation of hemicelluloses from sugarcane bagasse at different temperatures: Structure and properties. Carbohydr. Polym. 88(2), 638–645 (2012)

    Article  Google Scholar 

  12. Harun, R., Jason, W.S.Y., Cherrington, T., Danquah, M.K.: Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl. Energy 88(10), 3464–3467 (2011)

    Article  Google Scholar 

  13. Qing, Q., Li, H., Kumar, R.,Wyman, C.E.,: Xylooligosaccharides production, quantification, and characterization in context of lignocellulosic biomass pretreatment. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. pp. 391–415 (2013)

  14. Luo, Q., Peng, H., Zhou, M., Lin, D., Ruan, R., Wan, Y., Zhang, J., Liu, Y.: Alkali extraction and physicochemical characterization of hemicelluloses from young bamboo (Phyllostachys pubescens Mazel). BioResources 7(4), 5817–5828 (2012)

    Article  Google Scholar 

  15. Gunawan, C., Xue, S., Pattathil, S., Sousa, L.C., Dale, B.E., Balan, V.: Comprehensive characterization of non-cellulosic recalcitrant cell wall carbohydrates in unhydrolyzed solids from AFEX-pretreated corn stover. Biotechnol. Biofuels 10, 82 (2017)

    Article  Google Scholar 

  16. da Costa Sousa, L., Jin, M., Chundawat, S.P., Bokade, V., Tang, X., Azarpira, A., Lu, F., Avci, U., Humpula, J., Uppugundla, N., Gunawan, C., Pattathil, S., Cheh, A.M., Kothari, N., Kumar, R., Ralph, J., Hahn, M.G., Wyman, C.E., Singh, S., Simmons, B.A., Dale, B.E., Balan, V.: Next-generation ammonia pretreatment enhances cellulosic biofuel production. Energy Environ. Sci 9(4), 1215–1223 (2016)

    Article  Google Scholar 

  17. Avci, U., Zhou, X., Pattathil, S., Leonardo, S.D., Hahn, M.G., Dale, B., Xu, Y., Balan, V.: Effects of extractive ammonia pretreatment on the ultrastructure and glycan composition of corn stover. Front. Energy Res. 7, 85 (2019)

    Article  Google Scholar 

  18. Li, B.Z., Balan, V., Yuan, Y.J., Dale, B.E.: Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresour. Technol. 101(4), 1285–1292 (2010)

    Article  Google Scholar 

  19. Wang, Y., Cao, X., Zhang, R., Xiao, L., Yuan, T., Shi, Q., Sun, R.: Evaluation of xylooligosaccharide production from residual hemicelluloses of dissolving pulp by acid and enzymatic hydrolysis. RSC Adv. 8(61), 35211–35217 (2018)

    Article  Google Scholar 

  20. Sluiter, J.B., Ruiz, R.O., Scarlata, C.J., Sluiter, A.D., Templeton, D.W.: Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J. Agric. Food Chem. 58(16), 9043–9053 (2010)

    Article  Google Scholar 

  21. Modenbach, A.A., Nokes, S.E.: The use of high-solids loadings in biomass pretreatment—a review. Biotechnol. Bioeng. 109(6), 1430–1442 (2012)

    Article  Google Scholar 

  22. Kundu, P., Kumar, S., Ahluwalia, V., Kansal, S.K., Elumalai, S.: Extraction of arabinoxylan from corncob through modified alkaline method to improve xylooligosaccharides synthesis. Bioresour. Technol. Rep. 3, 51–58 (2018)

    Article  Google Scholar 

  23. Elumalai, S., Roa-Espinosa, A., Markley, J.L., Runge, T.M.: Combined sodium hydroxide and ammonium hydroxide pretreatment of post-biogas digestion dairy manure fiber for cost effective cellulosic bioethanol production. Sustain. Chem. Process 2, 12 (2014)

    Article  Google Scholar 

  24. Kacurakova, M., Belton, P.S., Wilson, R.H., Hirsch, J., Ebringerova, A.: Hydration properties of xylan-type structures: and FTIR study of xylooligosaccharides. J. Sci. Food Agric. 77(1), 38–44 (1998)

    Article  Google Scholar 

  25. Gupta, S., Madan, R.N., Bansal, M.C.: Chemical composition of Pinus caribaea hemicellulose. Tappi J. 70, 113–114 (1987)

    Google Scholar 

  26. Sun, R., Fang, J.M., Goodwin, A., Lawther, J.M., Bolton, A.J.: Isolation and characterization of polysaccharides from Abaca Fibre. J. Agric. Food Chem. 46(7), 2817–2822 (1998)

    Article  Google Scholar 

  27. Cagnon, B., Py, X., Guillot, A., Stoeckli, F., Chambet, G.: Contribution of hemicellulose, celuulose and lignin to mass and porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresour. Technol. 100(1), 292–298 (2009)

    Article  Google Scholar 

  28. Burhenne, L., Messmer, J., Aicher, T., Laborie, M.: The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J. Anal. Appl. Pyrol. 101, 177–184 (2013)

    Article  Google Scholar 

  29. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13), 1781–1788 (2007)

    Article  Google Scholar 

  30. Hoije, A., Sternemalm, E., Heikkinen, S., Tenkanen, M., Gatenholm, P.: Material properties of films from enzymatically tailored arabinoxylans. Biomacromol 9(7), 2042–2047 (2008)

    Article  Google Scholar 

  31. Cleemput, C., Laere, K.V., Hessing, M., Leuven, F.V., Torrekens, S., Delcour, J.A.: ldentification and characterization of a novel arabinoxylanase from wheat flour. Plant Physiol. 115(4), 1619–1627 (1997)

    Article  Google Scholar 

  32. Michelin, M., Ruiz, H.A., de Lourdes, T.M.M., Teixeira, J.A.: Multi-step approach to add value to corncob: production of biomass-degrading enzymes, lignin and fermentable sugars. Bioresour. Technol. 247, 582–590 (2018)

    Article  Google Scholar 

  33. Wang, T., Li, C., Song, M., Fan, R.: Xylo-oligosaccharides preparation through acid hydrolysis of hemicelluloses isolated from press-lye. Grain Oil Sci. Technol. 2(3), 73–77 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the Department of Biotechnology (DBT, Govt. of India), New Delhi, for their consistent financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasikumar Elumalai.

Ethics declarations

Conflict of interest

The authors declare that they don’t have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, P., Kansal, S.K. & Elumalai, S. Synergistic Action of Alkalis Improve the Quality Hemicellulose Extraction from Sugarcane Bagasse for the Production of Xylooligosaccharides. Waste Biomass Valor 12, 3147–3159 (2021). https://doi.org/10.1007/s12649-020-01235-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01235-7

Keywords

Navigation