Skip to main content
Log in

Fidelity-susceptibility analysis of the honeycomb-lattice Ising antiferromagnet under the imaginary magnetic field

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The honeycomb-lattice Ising antiferromagnet subjected to the imaginary magnetic field H = iθT∕2 with the “topological” angle θ and temperature T was investigated numerically. In order to treat such a complex-valued statistical weight, we employed the transfer-matrix method. As a probe to detect the order–disorder phase transition, we resort to an extended version of the fidelity F, which makes sense even for such a non-Hermitian transfer matrix. As a preliminary survey, for an intermediate value of θ, we investigated the phase transition via the fidelity susceptibility χF(θ). The fidelity susceptibility χF(θ) exhibits a notable signature for the criticality as compared to the ordinary quantifiers such as the magnetic susceptibility. Thereby, we analyze the end-point singularity of the order–disorder phase boundary at θ = π. We cast the χF(θ) data into the crossover-scaling formula with δθ = πθ scaled carefully. Our result for the crossover exponent ϕ seems to differ from the mean-field and square-lattice values, suggesting that the lattice structure renders subtle influences as to the multi-criticality at θ = π.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Uhlmann, Rep. Math. Phys. 9, 273 (1976)

    ADS  Google Scholar 

  2. R. Jozsa, J. Mod. Opt. 41, 2315 (1994)

    ADS  Google Scholar 

  3. A. Peres, Phys. Rev. A 30, 1610 (1984)

    ADS  MathSciNet  Google Scholar 

  4. T. Gorin, T. Prosen, T.H. Seligman, M. Žnidarič, Phys. Rep. 435, 33 (2006)

    ADS  Google Scholar 

  5. V.R. Vieira, J. Phys: Conf. Ser. 213, 012005 (2010)

    Google Scholar 

  6. S.-J. Gu, Int. J. Mod. Phys. B 24, 4371 (2010)

    ADS  Google Scholar 

  7. A. Dutta, G. Aeppli, B.K. Chakrabarti, U. Divakaran, T.F. Rosenbaum, D. Sen,Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information (Cambridge University Press, Cambridge, 2015)

  8. H.T. Quan, Z. Song, X.F. Liu, P. Zanardi, C.P. Sun, Phys. Rev. Lett. 96, 140604 (2006)

    ADS  Google Scholar 

  9. P. Zanardi, N. Paunković, Phys. Rev. E 74, 031123 (2006)

    ADS  MathSciNet  Google Scholar 

  10. H.-Q. Zhou, J.P. Barjaktarevic̃, J. Phys. A: Math. Theor. 41, 412001 (2008)

    Google Scholar 

  11. W.-C. Yu, H.-M. Kwok, J. Cao, S.-J. Gu, Phys. Rev. E 80, 021108 (2009)

    ADS  Google Scholar 

  12. W.-L. You, Y.-L. Dong, Phys. Rev. B 84, 174426 (2011)

    ADS  Google Scholar 

  13. V. Mukherjee, A. Polkovnikov, A. Dutta, Phys. Rev. B 83, 075118 (2011)

    ADS  Google Scholar 

  14. D. Rossini, E. Vicari, Phys. Rev. E 98, 062137 (2018)

    ADS  Google Scholar 

  15. A.F. Albuquerque, F. Alet, C. Sire, S. Capponi, Phys. Rev. B 81, 064418 (2010)

    ADS  Google Scholar 

  16. L. Wang, Y.-H. Liu, J. Imriška, P.N. Ma, M. Troyer, Phys. Rev. X 5, 031007 (2015)

    Google Scholar 

  17. D. Schwandt, F. Alet, S. Capponi, Phys. Rev. Lett. 103, 170501 (2009)

    ADS  Google Scholar 

  18. C. De Grandi, A. Polkovnikov, A.W. Sandvik, Phys. Rev. B 84, 224303 (2011)

    ADS  Google Scholar 

  19. J. Zhang, X. Peng, N. Rajendran, D. Suter, Phys. Rev. Lett. 100, 100501 (2008)

    ADS  Google Scholar 

  20. M. Kolodrubetz, V. Gritsev, A. Polkovnikov, Phys. Rev. B 88, 064304 (2013)

    ADS  Google Scholar 

  21. S.-J. Gu, W.C. Yu, Europhys. Lett. 108, 20002 (2014)

    ADS  Google Scholar 

  22. P. de Forcrand, T. Rindlisbacher, EPJ Web Conf. 175, 07026 (2018)

    Google Scholar 

  23. H.-Q. Zhou, R. Orús, G. Vidal, Phys. Rev. Lett. 100, 080601 (2008)

    ADS  Google Scholar 

  24. J. Sirker, Phys. Rev. Lett. 105, 117203 (2019)

    ADS  Google Scholar 

  25. Y. Nishiyama, Physica A 555, 124731 (2020)

    MathSciNet  Google Scholar 

  26. H. Imaoka, Y. Kasai, J. Phys. Soc. Jpn. 65, 725 (1996)

    ADS  Google Scholar 

  27. M. Suzuki, J. Phys. Soc. Jpn. 60, 441 (1990)

    ADS  Google Scholar 

  28. K.Y. Lin, F.Y. Wu, Int. J. Mod. Phys. B 2, 471 (1988)

    ADS  Google Scholar 

  29. S.-Y. Kim, Phys. Rev. E 82, 041107 (2010)

    ADS  MathSciNet  Google Scholar 

  30. V. Matveev, R. Shrock, J. Phys. A: Math. Theor. 29, 803 (1996)

    ADS  Google Scholar 

  31. V. Matveev, R. Shrock, Phys. Rev. E 53, 254 (1996)

    ADS  Google Scholar 

  32. V. Matveev, R. Shrock, J. Phys. A: Math. Theor. 41, 135002 (2008)

    ADS  Google Scholar 

  33. V. Azcoiti, G. Di Carlo, E. Follana, E. Royo-Amondarain, Phys. Rev. E 96, 032114 (2017)

    ADS  Google Scholar 

  34. V. Azcoiti, E. Follana, A. Vaquero, Nucl. Phys. B 851, 420 (2011)

    ADS  Google Scholar 

  35. T.D. Lee, C.N. Yang, Phys. Rev. 87, 410 (1952)

    ADS  MathSciNet  Google Scholar 

  36. E.K. Riedel, F. Wegner, Z. Phys. 225, 195 (1969)

    ADS  Google Scholar 

  37. P. Pfeuty, D. Jasnow, M.E. Fisher, Phys. Rev. B 10, 2088 (1974)

    ADS  Google Scholar 

  38. M.E. Fisher, Proc. R. Soc. London A 254, 66 (1960)

    ADS  Google Scholar 

  39. M. Kaufman, Phys. Rev. B 36, 3697 (1987)

    ADS  Google Scholar 

  40. T. Horiguchi, K. Tanaka, T. Morita, J. Phys. Soc. Jpn. 61, 64 (1992)

    ADS  Google Scholar 

  41. V. Matveev, R. Shrock, J. Phys. A: Math. Theor. 28, 4859 (1995)

    ADS  Google Scholar 

  42. P. Sarkanych, Y. Holovatch, R. Kenna, J. Phys. A: Math. Theor. 51, 505001 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Nishiyama.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishiyama, Y. Fidelity-susceptibility analysis of the honeycomb-lattice Ising antiferromagnet under the imaginary magnetic field. Eur. Phys. J. B 93, 174 (2020). https://doi.org/10.1140/epjb/e2020-10264-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10264-5

Keywords

Navigation