Skip to main content
Log in

MERISTEM ACTIVITYLESS (MAL) is involved in root development through maintenance of meristem size in rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Rice MERISTEM ACTIVITYLESS (MAL), a RING-H2 finger domain (RFD)-containing gene, regulates meristem cell viability after the initiation of root primordia mediated by cytokinin signaling.

Abstract

Genes in the RING-H2 finger domain (RFD) family play various roles during plant development and in biotic/abiotic stress responses. Rice gene MERISTEM ACTIVITYLESS (MAL), being contained in the RING-H2 finger domain (RFD), is characterized by a transmembrane domain at the N-terminal and a C3H2C3 zinc finger domain at the C-terminal. To elucidate the physiological and molecular functions of MAL, we generated MAL knockdown transgenic plants by RNA interference. MAL RNA-interfered (MRi) transgenic plants exhibited a phenotype with shorter crown root length and lower crown root number, accompanied by a lower cell division rate. The low division rate was observed in the root meristem exactly where MAL was expressed. Furthermore, transcriptome data revealed that cell wall macromolecule metabolism-related genes and redox-related genes were enriched in MAL RNAi lines. Most of these differentially expressed genes (DEGs) were induced by exogenous cytokinin. Hence, we conclude that MAL, as a novel regulatory factor, plays a major role in maintaining cell viability in the meristem after the initiation of root primordial formation, mediated by cytokinin signaling and reactive oxygen species (ROS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilar-Hernandez V, Aguilar-Henonin L, Guzman P (2011) Diversity in the architecture of ATLs, a family of plant ubiquitin-ligases, leads to recognition and targeting of substrates in different cellular environments. PLoS ONE 6(8):23934

    Google Scholar 

  • Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119(1):109–120

    CAS  Google Scholar 

  • Barrera-Rojas CH, Rocha GHB, Polverari L, Brito DAP, Batista DS, Notini MM, da Cruz ACF, Morea EGO, Sabatini S, Otoni WC, Nogueira FTS (2019) miR156-targeted SPL10 controls root meristem activity and root-derived de novo shoot regeneration via cytokinin responses. J Exp Bot 71(3):934–950

    Google Scholar 

  • Bian H, Xie Y, Guo F, Han N, Ma S, Zeng Z, Wang J, Yang Y, Zhu M (2012) Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytol 196(1):149–161

    CAS  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433(7021):39–44

    CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    CAS  Google Scholar 

  • Cheng X, Jiang H, Zhang J, Qian Y, Zhu S, Cheng B (2010) Overexpression of type-A rice response regulators, OsRR3 and OsRR5, results in lower sensitivity to cytokinins. Genet Mol Res 9(1):348–359

    CAS  Google Scholar 

  • Cho J, Paszkowski J (2017) Regulation of rice root development by a retrotransposon acting as a microRNA sponge. eLife 6:30038

    Google Scholar 

  • Coudert Y, Perin C, Courtois B, Khong NG, Gantet P (2010) Genetic control of root development in rice, the model cereal. Trends Plant Sci 15(4):219–226

    CAS  Google Scholar 

  • de Simone A, Hubbard R, de la Torre NV, Velappan Y, Wilson M, Considine MJ, Soppe WJJ, Foyer CH (2017) Redox changes during the cell cycle in the embryonic root meristem of Arabidopsis thaliana. Antioxid Redox Signal 27(18):1505–1519

    Google Scholar 

  • Dello Ioio R, Galinha C, Fletcher AG, Grigg SP, Molnar A, Willemsen V, Scheres B, Sabatini S, Baulcombe D, Maini PK, Tsiantis M (2012) A PHABULOSA/cytokinin feedback loop controls root growth in Arabidopsis. Curr Biol 22(18):1699–1704

    Google Scholar 

  • Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17(8):678–682

    Google Scholar 

  • Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322(5906):1380–1384

    Google Scholar 

  • Di Mambro R, De Ruvo M, Pacifici E, Salvi E, Sozzani R, Benfey PN, Busch W, Novak O, Ljung K, Di Paola L, Maree AFM, Costantino P, Grieneisen VA, Sabatini S (2017) Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. Proc Natl Acad Sci USA 114(36):7641–7649

    Google Scholar 

  • Gao S, Fang J, Xu F, Wang W, Sun X, Chu J, Cai B, Feng Y, Chu C (2014) Cytokinin oxidase/dehydrogenase 4 integrates cytokinin and auxin signaling to control rice crown root formation. Plant Physiol 165(3):1035–1046

    CAS  Google Scholar 

  • Giulini A, Wang J, Jackson D (2004) Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430(7003):1031–1034

    CAS  Google Scholar 

  • Grieneisen VA, Xu J, Maree AF, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449(7165):1008–1013

    CAS  Google Scholar 

  • Hirose N, Makita N, Kojima M, Kamada-Nobusada T, Sakakibara H (2007) Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism. Plant Cell Physiol 48(3):523–539

    CAS  Google Scholar 

  • Hwang I, Sheen J, Muller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63:353–380

    CAS  Google Scholar 

  • Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell 17(5):1387–1396

    CAS  Google Scholar 

  • Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46(1):23–47

    CAS  Google Scholar 

  • Jiang W, Zhou S, Zhang Q, Song H, Zhou DX, Zhao Y (2017) Transcriptional regulatory network of WOX11 is involved in the control of crown root development, cytokinin signals, and redox in rice. J Exp Bot 68(11):2787–2798

    CAS  Google Scholar 

  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 18(10):2733–2748

    CAS  Google Scholar 

  • Kitomi Y, Ito H, Hobo T, Aya K, Kitano H, Inukai Y (2011a) The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. Plant J 67(3):472–484

    CAS  Google Scholar 

  • Kitomi Y, Kitano H, Inukai Y (2011b) Molecular mechanism of crown root initiation and the different mechanisms between crown root and radicle in rice. Plant Signal Behav 6(9):1270–1278

    Google Scholar 

  • Kka N, Rookes J, Cahill D (2018) The influence of ascorbic acid on root growth and the root apical meristem in Arabidopsis thaliana. Plant Signal Behav 129:323–330

    CAS  Google Scholar 

  • Koiwai H, Tagiri A, Katoh S, Katoh E, Ichikawa H, Minami E, Nishizawa Y (2007) RING-H2 type ubiquitin ligase EL5 is involved in root development through the maintenance of cell viability in rice. Plant J 51(1):92–104

    CAS  Google Scholar 

  • Lee Y, Lee WS, Kim SH (2013) Hormonal regulation of stem cell maintenance in roots. J Exp Bot 64(5):1153–1165

    CAS  Google Scholar 

  • Leitao N, Dangeville P, Carter R, Charpentier M (2019) Nuclear calcium signatures are associated with root development. Nat Commun 10(1):4865

    Google Scholar 

  • Li J, Zhao Y, Chu H, Wang L, Fu Y, Liu P, Upadhyaya N, Chen C, Mou T, Feng Y, Kumar P, Xu J (2015) SHOEBOX modulates root meristem size in rice through dose-dependent effects of gibberellins on cell elongation and proliferation. PLoS Genet 11(8):1005464

    Google Scholar 

  • Lin C, Sauter M (2019) Polar auxin transport determines adventitious root emergence and growth in rice. Front Plant Sci 10:444

    Google Scholar 

  • Liu H, Wang S, Yu X, Yu J, He X, Zhang S, Shou H, Wu P (2005) ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J 43(1):47–56

    Google Scholar 

  • Liu S, Wang J, Wang L, Wang X, Xue Y, Wu P, Shou H (2009) Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Res 19(9):1110–1119

    CAS  Google Scholar 

  • Mao C, He J, Liu L, Deng Q, Yao X, Liu C, Qiao Y, Li P, Ming F (2020) OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development. Plant Biotechnol J 18(2):429–442

    CAS  Google Scholar 

  • Marcon C, Paschold A, Hochholdinger F (2013) Genetic control of root organogenesis in cereals. Methods Mol Biol 959:69–81

    CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T, Takahashi H (2005) Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J 42(3):305–314

    CAS  Google Scholar 

  • Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci USA 103(44):16598–16603

    CAS  Google Scholar 

  • Mochizuki S, Jikumaru Y, Nakamura H, Koiwai H, Sasaki K, Kamiya Y, Ichikawa H, Minami E, Nishizawa Y (2014) Ubiquitin ligase EL5 maintains the viability of root meristems by influencing cytokinin-mediated nitrogen effects in rice. J Exp Bot 65(9):2307–2318

    CAS  Google Scholar 

  • Moubayidin L, Di Mambro R, Sabatini S (2009) Cytokinin-auxin crosstalk. Trends Plant Sci 14(10):557–562

    CAS  Google Scholar 

  • Noda S, Takahashi Y, Tsurumaki Y, Yamamura M, Nishikubo N, Yamaguchi M, Sakurai N, Hattori T, Suzuki H, Demura T (2013) ATL54, a RING-H2 domain protein selected by a gene co-expression network analysis, is associated with secondary cell wall formation in Arabidopsis. Plant Biotech 30(2):169–177

    CAS  Google Scholar 

  • Pacifici E, Di Mambro R, Dello Ioio R, Costantino P, Sabatini S (2018) Acidic cell elongation drives cell differentiation in the Arabidopsis root. EMBO J 37(16):99134

    Google Scholar 

  • Ross EJ, Stone JM, Elowsky CG, Arredondo-Peter R, Klucas RV, Sarath G (2004) Activation of the Oryza sativa non-symbiotic haemoglobin-2 promoter by the cytokinin-regulated transcription factor, ARR1. J Exp Bot 55(403):1721–1731

    CAS  Google Scholar 

  • Sakai H, Aoyama T, Oka A (2000) Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J 24(6):703–711

    CAS  Google Scholar 

  • Sakamoto T, Sakakibara H, Kojima M, Yamamoto Y, Nagasaki H, Inukai Y, Sato Y, Matsuoka M (2006) Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice. Plant Physiol 142(1):54–62

    CAS  Google Scholar 

  • Sakamoto T, Sotta N, Suzuki T, Fujiwara T, Matsunaga S (2019) The 26S proteasome is required for the maintenance of root apical meristem by modulating auxin and cytokinin responses under high-boron stress. Front Plant Sci 10:590

    Google Scholar 

  • Sato Y, Takehisa H, Kamatsuki K, Minami H, Namiki N, Ikawa H, Ohyanagi H, Sugimoto K, Antonio BA, Nagamura Y (2013) RiceXPro version 3.0: expanding the informatics resource for rice transcriptome. Nucleic Acids Res 41:1206–1213

    Google Scholar 

  • Schaller GE, Bishopp A, Kieber JJ (2015) The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell 27(1):44–63

    CAS  Google Scholar 

  • Scheres B, Krizek BA (2018) Coordination of growth in root and shoot apices by AIL/PLT transcription factors. Curr Opin Plant Biol 41:95–101

    CAS  Google Scholar 

  • Sun H, Tao J, Hou M, Huang S, Chen S, Liang Z, Xie T, Wei Y, Xie X, Yoneyama K, Xu G, Zhang Y (2015) A strigolactone signal is required for adventitious root formation in rice. Ann Bot 115(7):1155–1162

    CAS  Google Scholar 

  • Takai R, Matsuda N, Nakano A, Hasegawa K, Akimoto C, Shibuya N, Minami E (2002) EL5, a rice N-acetylchitooligosaccharide elicitor-responsive RING-H2 finger protein, is a ubiquitin ligase which functions in vitro in co-operation with an elicitor-responsive ubiquitin-conjugating enzyme, OsUBC5b. Plant J 30(4):447–455

    CAS  Google Scholar 

  • Takatsuka H, Umeda M (2014) Hormonal control of cell division and elongation along differentiation trajectories in roots. J Exp Bot 65(10):2633–2643

    CAS  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    CAS  Google Scholar 

  • Ugartechea-Chirino Y, Swarup R, Swarup K, Peret B, Whitworth M, Bennett M, Bougourd S (2010) The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana. Ann Bot 105(2):277–289

    CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1999) Dimerization and DNA binding of auxin response factors. Plant J 19(3):309–319

    CAS  Google Scholar 

  • Vanstraelen M, Benkova E (2012) Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Biol 28:463–487

    CAS  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15(11):2532–2550

    CAS  Google Scholar 

  • Xu Y, Burgess P, Zhang X, Huang B (2016) Enhancing cytokinin synthesis by overexpressing IPT alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera. J Exp Bot 67(6):1979–1992

    CAS  Google Scholar 

  • Zhang W, To JP, Cheng CY, Schaller GE, Kieber JJ (2011) Type-A response regulators are required for proper root apical meristem function through post-transcriptional regulation of PIN auxin efflux carriers. Plant J 68(1):1–10

    CAS  Google Scholar 

  • Zhao Y, Cheng S, Song Y, Huang Y, Zhou S, Liu X, Zhou DX (2015) The interaction between rice ERF3 and WOX11 promotes crown root development by regulating gene expression involved in cytokinin signaling. Plant Cell 27(9):2469–2483

    CAS  Google Scholar 

  • Zhao Y, Hu Y, Dai M, Huang L, Zhou DX (2009) The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell 21(3):736–748

    CAS  Google Scholar 

  • Zhou S, Jiang W, Long F, Cheng S, Yang W, Zhao Y, Zhou DX (2017) Rice homeodomain protein WOX11 recruits a histone acetyltransferase complex to establish programs of cell proliferation of crown root meristem. Plant Cell 29(5):1088–1104

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Qinglu Zhang, and Xianghua Li for help in field experiments and management and Qinghua Zhang for RNA-Seq sequencing. This work was supported by National Key Research and Development Program of China (2016YFD0100301-006-1 and 2016YFD0100903-3), National Natural Science Foundation of China (31671516, 31730049 and 31970806) and the Fundamental Research Funds for the Central Universities (2662018JC017).

Author information

Authors and Affiliations

Authors

Contributions

W.J. and Y.Z. designed the experiment. W.J. S.Z. H.H., and H.S. performed the experiments. Q.Z. managed the fields. W.J., S.Z., and Y.Z. analyzed the data. J.W. and Y.Z. wrote the article.

Corresponding author

Correspondence to Yu Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Zhou, S., Huang, H. et al. MERISTEM ACTIVITYLESS (MAL) is involved in root development through maintenance of meristem size in rice. Plant Mol Biol 104, 499–511 (2020). https://doi.org/10.1007/s11103-020-01053-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-020-01053-4

Keywords

Navigation