Skip to main content

Advertisement

Log in

Heat tolerance in vegetables in the current genomic era: an overview

  • Review Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Global temperature rise is emerging as an alarming threat to agriculture and especially for vegetables, as they are more sensitive to high temperature because of their succulent nature. Vegetables include different edible plant parts such as leaves, stems, stalks, roots, tubers, bulbs, flowers, fruits, and seeds. An increase in temperature impairs the growth and development of vegetable plants and eventually reduces their yield. Heat tolerance is a complex quantitative trait that involves a series of physiological, biochemical, and molecular pathways. This complexity is further exacerbated by the presence of a large magnitude of genotype × environment and epistatic interactions, so breeders have to face challenges during development and selection of heat tolerant genotypes. Understanding the response of plants and resistance mechanisms involved in heat tolerance would help the breeders in formulating strategies to improve vegetable productivity under heat stress. In this review, firstly the impact of heat stress on the morphological, physiological, and molecular processes of different vegetables have been described, then discussed adaptation mechanisms employed by plants to combat heat stress. Finally, conventional and potential genomic strategies i.e. marker-assisted breeding, quantitative trait loci mapping, genome wide association, genomic selection, genetic engineering, and genome editing that are being used by the breeders to create heat resistance are presented. For vegetables, genome editing, and transgenic approaches need to be combined with conventional and marker-assisted breeding activities to develop heat tolerant varieties as these efforts will lead to tangible practical outcomes that will improve the vegetable productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel CG, Asaad SS, Mohammad DS (2016) Minimum, optimum, and maximum temperatures required for germination of Onion, Radish, Tomato, and Pepper. Int J Farm Allied Sci 5:26–45

    Google Scholar 

  • Abu-Rayyan A, Akash MW, Gianquinto G (2012) Onion seed germination as affected by temperature and light. Int J Veg Sci 18:49–63

    Google Scholar 

  • Adams S, Cockshull K, Cave C (2001) Effect of temperature on the growth and development of tomato fruits. Ann Bot 88:869–877

    Google Scholar 

  • Ahmad J, Balal RM, Shahid MAS, Akhtar GA, Akram A, Khan MW, Zubair M (2016) Characterization of okra genotypes at reproductive stage under high temperature stress. Int J Chem Biochem Sci 9:44–48

    Google Scholar 

  • Ahn Y-K, Manivannan A, Karna S, Jun T-H, Yang E-Y, Choi S, Kim J-H, Kim D-S, Lee E-S (2018) Whole genome resequencing of Capsicum baccatum and Capsicum annuum to discover single nucleotide polymorphism related to powdery mildew resistance. Sci Rep 8:1–11

    Google Scholar 

  • Alemayehu D (2017) Application of genetic engineering in plant breeding for biotic stress resistance. Int J Res Stud Biosci 5:28–35

    Google Scholar 

  • Ali A, Chung S-M (2013) Identification of Quantitative Trait Loci (QTL) related to heat stress tolerance in Chinese cabbage, “positioning plant breeding for the future”. In: 3rd Annual meeting of the National Association of Plant Breeders, Tampa, Florida, USA

  • Ali M, Ayyub CM, Amjad M, Ahmad R (2019) Evaluation of thermo-tolerance potential in cucumber genotypes under heat stress. Pak J Agric Sci 56(1):53–61

    Google Scholar 

  • Argyris J, Truco MJ, Ochoa O, Knapp SJ, Still DW, Lenssen GM, Schut JW, Michelmore RW, Bradford KJ (2005) Quantitative trait loci associated with seed and seedling traits in Lactuca. Theor Appl Genet 111:1365–1376

    Google Scholar 

  • Ashkani S, Rafii MY, Shabanimofrad M, Miah G, Sahebi M, Azizi P, Tanweer FA, Akhtar MS, Nasehi A (2015) Molecular breeding strategy and challenges towards improvement of blast disease resistance in rice crop. Front Plant Sci 6:886

    Google Scholar 

  • Barchi L, Pietrella M, Venturini L, Minio A, Toppino L, Acquadro A, Andolfo G, Aprea G, Avanzato C, Bassolino L (2019) A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Sci Rep 9:1–13

    CAS  Google Scholar 

  • Belhadj Slimen I, Najar T, Ghram A, Dabbebi H, Ben Mrad M, Abdrabbah M (2014) Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int J Hyperth 30:513–523

    CAS  Google Scholar 

  • Benites FRG, Pinto CABP (2011) Genetic gains for heat tolerance in potato in three cycles of recurrent selection. Crop Breed Appl Biotechnol 11:133–140

    Google Scholar 

  • Besma B, Mounir D (2010) Biochemical and mineral responses of okra seeds (Abelmoschus esculentus L. variety Marsaouia) to salt and thermal stresses. J Agron 9:29–37

    Google Scholar 

  • Bhat JA, Ali S, Salgotra RK, Mir ZA, Dutta S, Jadon V, Tyagi A, Mushtaq M, Jain N, Singh PK (2016) Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front Genet 7:221

    Google Scholar 

  • Bisbis MB, Gruda N, Blanke M (2018) Potential impacts of climate change on vegetable production and product quality—a review. J Clean Prod 170:1602–1620

    CAS  Google Scholar 

  • Bita C, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Google Scholar 

  • Branham SE, Stansell ZJ, Couillard DM, Farnham MW (2017) Quantitative trait loci mapping of heat tolerance in broccoli (Brassica oleracea var. italica) using genotyping-by-sequencing. Theor Appl Genet 130:529–538

    CAS  Google Scholar 

  • Bray EA (2000) Response to abiotic stress. In: Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203

  • Bulgari R, Franzoni G, Ferrante A (2019) Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9:306

    CAS  Google Scholar 

  • Camejo D, Jiménez A, Alarcón JJ, Torres W, Gómez JM, Sevilla F (2006) Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct Plant Biol 33:177–187

    CAS  Google Scholar 

  • Cavusoglu K, Kabar K (2007) Comparative effects of some plant growth regulators on the germination of barley and radish seeds under high temperature stress. Eurasian J Biosci 1:1–10

    CAS  Google Scholar 

  • Chapman SC, Chakraborty S, Dreccer MF, Howden SM (2012) Plant adaptation to climate change—opportunities and priorities in breeding. Crop Pasture Sci 63:251–268

    Google Scholar 

  • Chen F, Foolad MR, Hyman J, Clair DS, Beelaman R (1999) Mapping of QTLs for lycopene and other fruit traits in a Lycopersicon esculentum × L. pimpinellifolium cross and comparison of QTLs across tomato species. Mol Breed 5:283–299

    CAS  Google Scholar 

  • Chen F, Song Y, Li X, Chen J, Mo L, Zhang X, Lin Z, Zhang L (2019) Genome sequences of horticultural plants: past, present, and future. Hortic Res 6:1–23

    Google Scholar 

  • Cheng L, Zou Y, Ding S, Zhang J, Yu X, Cao J, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51:489–499

    CAS  Google Scholar 

  • Chitwood J, Shi A, Evans M, Rom C, Gbur EE, Motes D, Chen P, Hensley D (2016) Effect of temperature on seed germination in spinach (Spinacia oleracea). HortScience 51:1475–1478

    Google Scholar 

  • Choi KY, Paek KY, Lee YB (2000) Effect of air temperature on tipburn incidence of butterhead and leaf lettuce in a plant factory. In: Transplant production in the 21st Century. Springer, Dordrecht, pp 166–171

  • Coolong TW, Randle WM (2003) Temperature influences flavor intensity and quality in Granex 33’ onion. J Am Soc Hortic Sci 128:176–181

    Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2002) Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol 129:1773–1780

    CAS  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975

    CAS  Google Scholar 

  • Dahal K, Li X-Q, Tai H, Creelman A, Bizimungu B (2019) Improving potato stress tolerance and tuber yield under a climate change scenario—a current overview. Front Pant Sci 10:563

    Google Scholar 

  • Damra EM, Kasrawi M, Akash MM (2017) Development of scar marker linked to heat stress tolerance in Tomato. In: Proceedings of 65th ISERD international conference, Mecca, Saudi Arabia, pp 122–130

  • Daymond A, Wheeler T, Hadley P, Ellis R, Morison J (1997) The growth, development and yield of onion (Allium cepa L.) in response to temperature and CO2. J Hortic Sci 72:135–145

    Google Scholar 

  • De la Peña RC, Ebert AW, Gniffke PA, Hanson P, Symonds RC (2011) Genetic adjustment to changing climates: vegetables. Crop Adapt Clim Change. https://doi.org/10.1002/9780470960929.ch18

    Article  Google Scholar 

  • Devi AP, Sing MS, Das SP, Kabiraj J (2017) Effect of climate change on vegetable production—a review. Int J Curr Microbiol Appl Sci 6:447–483

    Google Scholar 

  • Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546–549

    CAS  Google Scholar 

  • Farnham MW, Bjorkman T (2011) Breeding vegetables adapted to high temperatures: a case study with broccoli. Hortic Sci 46:1093–1097

    Google Scholar 

  • Fukuoka N, Masuda D, Kanamori Y (2009) Effects of temperature around the fruit on sugar accumulation in watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) during the latter half of fruit developmental period. J Jpn Soc Hortic Sci 78:97–102

    CAS  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    CAS  Google Scholar 

  • Galsurker O, Doron-Faigenboim A, Teper-Bamnolker P, Daus A, Lers A, Eshel D (2018) Differential response to heat stress in outer and inner onion bulb scales. J Exp Bot 69:4047–4064

    CAS  Google Scholar 

  • Gangadhar BH, Yu JW, Sajeesh K, Park SW (2014) A systematic exploration of high-temperature stress-responsive genes in potato using large-scale yeast functional screening. Mol Genet Genomics 289:185–201

    CAS  Google Scholar 

  • Ghai N, Kaur J, Jindal S, Dhaliwal M, Pahwa K (2016) Physiological and biochemical response to higher temperature stress in hot pepper (Capsicum annuum L.). J Appl Nat Sci 8:1133–1137

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  Google Scholar 

  • Grilli GVG, Braz LT, Lemos EGM (2007) QTL identification for tolerance to fruit set in tomato by fAFLP markers. Crop Breed Appl Biotechnol 7:234–241

    CAS  Google Scholar 

  • Gunawardhana M, De Silva C (2011) Impact of temperature and water stress on growth yield and related biochemical parameters of okra. Trop Agric Res. https://doi.org/10.4038/tar.v23i1.4634

    Article  Google Scholar 

  • Guo M, Liu J-H, Ma X, Luo D-X, Gong Z-H, Lu M-H (2016) The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci 7:114

    Google Scholar 

  • Guo M, Lu J-P, Zhai Y-F, Chai W-G, Gong Z-H, Lu M-H (2015) Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.). BMC Plant Biol 15:151

    Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58

    CAS  Google Scholar 

  • Harel D, Fadida H, Slepoy A, Gantz S, Shilo K (2014) The effect of mean daily temperature and relative humidity on pollen, fruit set and yield of tomato grown in commercial protected cultivation. Agronomy 4:167–177

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Google Scholar 

  • Hayes B, Goddard M (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Google Scholar 

  • He Y, Fan M, Sun Y, Li L (2019) Genome-wide analysis of watermelon HSP20s and their expression profiles and subcellular locations under stresses. Int J Mol Sci 20:12

    Google Scholar 

  • Herrero MP, Johnson R (1980) High temperature stress and pollen viability of maize 1. Crop Sci 20:796–800

    Google Scholar 

  • Hijmans RJ (2003) The effect of climate change on global potato production. Am J Potato Res 80:271–279

    Google Scholar 

  • Hou W, Sun A, Chen H, Yang F, Pan J, Guan M (2016) Effects of chilling and high temperatures on photosynthesis and chlorophyll fluorescence in leaves of watermelon seedlings. Biol Plant 60:148–154

    CAS  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    CAS  Google Scholar 

  • Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J, Bowman M, Iovene M, Sanseverino W, Cavagnaro P (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48:657

    CAS  Google Scholar 

  • IPCC (2007) The physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt MT, Miller HL (eds) Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM (eds) A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jha UC, Bohra A, Singh NP (2014) Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed 133:679–701

    Google Scholar 

  • Kamel M, Soliman S, Mandour A, Ahmed M (2010) Genetic evaluation and molecular markers for heat tolerance in tomato (Lycopersicon esculentum Mill.). J Am Sci 6:364–374

    Google Scholar 

  • Kaneko Y, Bang SW (2014) Interspecific and intergeneric hybridization and chromosomal engineering of Brassicaceae crops. Breed Sci 64:14–22

    CAS  Google Scholar 

  • Kano Y (2004) Effects of summer day-time temperature on sugar content in several portions of watermelon fruit (Citrullus lanatus). J Hortic Sci Biotechnol 79:142–145

    CAS  Google Scholar 

  • Kano Y (2006) Effect of heating fruit on cell size and sugar accumulation in melon fruit (Cucumis melo L.). Hortic Sci 41:1431–1434

    CAS  Google Scholar 

  • Karapanos IC, Mahmood S, Thanopoulos C (2008) Fruit set in solanaceous vegetable crops as affected by floral and environmental factors. Eur J Plant Sci Biotechnol 2:88–105

    Google Scholar 

  • Kaur J (2014) Physiological and biochemical changes in some thermotolerant and thermosensitive chilli (Capsicum annuum L.) genotypes. Punjab Agricultural University, Ludhiana

    Google Scholar 

  • Kaushal N, Bhandari K, Siddique KH, Nayyar H (2016) Food crops face rising temperatures: an overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food Agric 2:1134380

    Google Scholar 

  • Khan AL, Hamayun M, Waqas M, Kang S-M, Kim Y-H, Kim D-H, Lee I-J (2012) Exophiala sp. LHL08 association gives heat stress tolerance by avoiding oxidative damage to cucumber plants. Biol Fertil Soils 48:519–529

    CAS  Google Scholar 

  • Kim MD, Kim YH, Kwon SY, Yun DJ, Kwak SS, Lee HS (2010) Enhanced tolerance to methyl viologen-induced oxidative stress and high temperature in transgenic potato plants overexpressing the CuZnSOD, APX and NDPK2 genes. Physiol Plant 140:153–162

    CAS  Google Scholar 

  • Kim S, Park M, Yeom S-I, Kim Y-M, Lee JM, Lee H-A, Seo E, Choi J, Cheong K, Kim K-T (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278

    CAS  Google Scholar 

  • Kitashiba H, Li F, Hirakawa H, Kawanabe T, Zou Z, Hasegawa Y, Tonosaki K, Shirasawa S, Fukushima A, Yokoi S (2014) Draft sequences of the radish (Raphanus sativus L.) genome. DNA Res 21:481–490

    CAS  Google Scholar 

  • Klap C, Yeshayahou E, Bolger AM, Arazi T, Gupta SK, Shabtai S, Usadel B, Salts Y, Barg R (2017) Tomato facultative parthenocarpy results from Sl AGAMOUS-LIKE 6 loss of function. Plant Biotechnol J 15:634–647

    CAS  Google Scholar 

  • Kole C, Muthamilarasan M, Henry R, Edwards D, Sharma R, Abberton M, Batley J, Bentley A, Blakeney M, Bryant J (2015) Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front Plant Sci 6:563

    Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf K-D (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    CAS  Google Scholar 

  • Kugblenu YO, Oppong Danso E, Ofori K, Andersen MN, Abenney-Mickson S, Sabi EB, Plauborg F, Abekoe MK, Ofosu-Anim J, Ortiz R (2013) Screening tomato genotypes for adaptation to high temperature in West Africa. Acta Agric Scand B 63:516–522

    CAS  Google Scholar 

  • Kumar SN, Govindakrishnan P, Swarooparani D, Nitin C, Surabhi J, Aggarwal P (2015) Assessment of impact of climate change on potato and potential adaptation gains in the Indo-Gangetic Plains of India. Int J Plant Prod 9:151–170

    Google Scholar 

  • Lai Y-S, Shen D, Zhang W, Zhang X, Qiu Y, Wang H, Dou X, Li S, Wu Y, Song J (2018) Temperature and photoperiod changes affect cucumber sex expression by different epigenetic regulations. BMC Plant Biol 18:268

    CAS  Google Scholar 

  • Li Q, Li H, Huang W, Xu Y, Zhou Q, Wang S, Ruan J, Huang S, Zhang Z (2019) A chromosome-scale genome assembly of cucumber (Cucumis sativus L.). GigaScience 8:giz072

    Google Scholar 

  • Lin K-H, Yeh W-L, Chen H-M, Lo H-F (2010) Quantitative trait loci influencing fruit-related characteristics of tomato grown in high-temperature conditions. Euphytica 174:119–135

    CAS  Google Scholar 

  • Lindemann-Zutz K, Fricke A, Stützel H (2016) Prediction of time to harvest and its variability in broccoli (Brassica oleracea var. italica) Part I. Plant developmental variation and forecast of time to head induction. Sci Hortic 198:424–433

    Google Scholar 

  • Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IA, Zhao M, Ma J, Yu J, Huang S (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930

    CAS  Google Scholar 

  • Liu X, Yang J-H, Li B, Yang X-M, Meng Q-W (2010) Antisense expression of tomato chloroplast omega-3 fatty acid desaturase gene (LeFAD7) enhances the tomato high-temperature tolerance through reductions of trienoic fatty acids and alterations of physiological parameters. Photosynthetica 48:59–66

    CAS  Google Scholar 

  • Luthra S, Malik K, Gupta V, Singh B (2013) Evaluation of potato genotypes under high temperature stress conditions. Crop Improv 40:74–80

    Google Scholar 

  • Mahesh U, Mamidala P, Rapolu S, Aragao FJ, Souza M, Rao P, Kirti P, Nanna RS (2013) Constitutive overexpression of small HSP24.4 gene in transgenic tomato conferring tolerance to high-temperature stress. Mol Breed 32:687–697

    CAS  Google Scholar 

  • Makarova S, Makhotenko A, Spechenkova N, Love AJ, Kalinina NO, Taliansky M (2018) Interactive responses of potato (Solanum tuberosum L.) plants to heat stress and infection with potato virus Y. Front Microbiol 9:2582

    Google Scholar 

  • Malik MK, Slovin JP, Hwang CH, Zimmerman JL (1999) Modified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased or decreased thermotolerance. Plant J 20:89–99

    CAS  Google Scholar 

  • Manosa NA (2011) Influence of temperature on yield and quality of carrots (Daucus carota var. sativa). Department of Soil, Crop and Climate Sciences University of the Free State Bloemfontein Faculty of Natural and Agricultural Sciences

  • Martinez V, Nieves-Cordones M, Lopez-Delacalle M, Rodenas R, Mestre T, Garcia-Sanchez F, Rubio F, Nortes P, Mittler R, Rivero R (2018) Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules 23:535

    Google Scholar 

  • Matschegewski C, Zetzsche H, Hasan Y, Leibeguth L, Briggs W, Ordon F, Uptmoor R (2015) Genetic variation of temperature-regulated curd induction in cauliflower: elucidation of floral transition by genome-wide association mapping and gene expression analysis. Front Plant Sci 6:720

    Google Scholar 

  • Mazzeo MF, Cacace G, Iovieno P, Massarelli I, Grillo S, Siciliano RA (2018) Response mechanisms induced by exposure to high temperature in anthers from thermo-tolerant and thermo-sensitive tomato plants: a proteomic perspective. PLoS ONE 13:e0201027

    Google Scholar 

  • McCord PH, Sosinski BR, Haynes K, Clough M, Yencho G (2011) QTL mapping of internal heat necrosis in tetraploid potato. Theor Appl Genet 122:129–142

    CAS  Google Scholar 

  • McKeown A, Warland J, McDonald M (2006) Long-term climate and weather patterns in relation to crop yield: a minireview. Can J Bot 84:1031–1036

    Google Scholar 

  • Meng X, Wang J-R, Wang G-D, Liang X-Q, Li X-D, Meng Q-W (2015) An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato. J Plant Physiol 175:1–8

    CAS  Google Scholar 

  • Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf K-D (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16:1555–1567

    CAS  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    CAS  Google Scholar 

  • Montero-Pau J, Blanca J, Bombarely A, Ziarsolo P, Esteras C, Martí‐Gómez C, Ferriol M, Gómez P, Jamilena M, Mueller L (2018) De novo assembly of the zucchini genome reveals a whole‐genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnol J 16:1161–1171

    CAS  Google Scholar 

  • Moretti C, Mattos L, Calbo A, Sargent S (2010) Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: a review. Food Res Int 43:1824–1832

    CAS  Google Scholar 

  • Müller F, Xu J, Kristensen L, Wolters-Arts M, de Groot PF, Jansma SY, Mariani C, Park S, Rieu I (2016) High-temperature-induced defects in tomato (Solanum lycopersicum) anther and pollen development are associated with reduced expression of B-class floral patterning genes. PLoS ONE 11:e0167614

    Google Scholar 

  • Nadeem M, Li J, Wang M, Shah L, Lu S, Wang X, Ma C (2018) Unraveling field crops sensitivity to heat stress: mechanisms, approaches, and future prospects. Agronomy 8:128

    CAS  Google Scholar 

  • Naik PS, Singh M, Ranjan J (2017) Impact of climate change on vegetable production and adaptation measures. In: Abiotic stress management for resilient agriculture. Springer, Singapore, pp 413–428

  • Nascimento WM, Vieira JV, Silva GO, Reitsma KR, Cantliffe DJ (2008) Carrot seed germination at high temperature: effect of genotype and association with ethylene production. Hortic Sci 43:1538–1543

    Google Scholar 

  • Nautiyal PC, Shono M, Egawa Y (2005) Enhanced thermotolerance of the vegetative part of MT-sHSP transgenic tomato line. Sci Hortic 105:393–409

    Google Scholar 

  • Neta-Sharir I, Isaacson T, Lurie S, Weiss D (2005) Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17:1829–1838

    CAS  Google Scholar 

  • Nunes-Nesi A, Alseekh S, de Oliveira Silva FM, Omranian N, Lichtenstein G, Mirnezhad M, González RRR, Garcia JS, Conte M, Leiss KA (2019) Identification and characterization of metabolite quantitative trait loci in tomato leaves and comparison with those reported for fruits and seeds. Metabolomics 15:46

    Google Scholar 

  • Oliveira L, Melo L, Brondani C, Peloso M, Brondani R (2008) Backcross assisted by microsatellite markers in common bean. Genet Mol Res 7:1000–1010

    CAS  Google Scholar 

  • Opabode JT (2017) Sustainable mass production, improvement, and conservation of African indigenous vegetables: the role of plant tissue culture, a review. Int J Veg Sci 23:438–455

    Google Scholar 

  • Ortiz R, Braun H-J, Crossa J, Crouch JH, Davenport G, Dixon J, Dreisigacker S, Duveiller E, He Z, Huerta J (2008) Wheat genetic resources enhancement by the International Maize and Wheat Improvement Center (CIMMYT). Genet Resour Crop Evol 55:1095–1140

    Google Scholar 

  • PGS Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189

    Google Scholar 

  • Park HJ, Jung WY, Lee SS, Song JH, Kwon S-Y, Kim H, Kim C, Ahn JC, Cho HS (2013) Use of heat stress responsive gene expression levels for early selection of heat tolerant cabbage (Brassica oleracea L.). Int J Mol Sci 14:11871–11894

    Google Scholar 

  • Parkin IA, Koh C, Tang H, Robinson SJ, Kagale S, Clarke WE, Town CD, Nixon J, Krishnakumar V, Bidwell SL (2014) Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol 15:R77

    Google Scholar 

  • Pen S, Nath U, Song S, Goswami G, Lee J-H, Jung H-J, Kim H-T, Park J-I, Nou I-S (2018) Developmental stage and shape of embryo determine the efficacy of embryo rescue in introgressing orange/yellow color and anthocyanin genes of Brassica species. Plants 7:99

    CAS  Google Scholar 

  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69

    Google Scholar 

  • Porter JR, Gawith M (1999) Temperatures and the growth and development of wheat: a review. Eur J Agron 10:23–36

    Google Scholar 

  • Posch BC, Kariyawasam BC, Bramley H, Coast O, Richards RA, Reynolds MP, Trethowan R, Atkin OK (2019) Exploring high temperature responses of photosynthesis and respiration to improve heat tolerance in wheat. J Exp Bot 70(19):5051–5069

    CAS  Google Scholar 

  • Putland D, Deuter P (2011) The effects of high temperatures on vegetable production and the rapid assessment of climate risk in agriculture. In: Asian Pacific economic workshop on collaboration on the promotion of indigenous vegetables for coping with climate change and food security, pp 3–18

  • Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet 45:1510

    CAS  Google Scholar 

  • Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M, Luo Y (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci USA 111:5135–5140

    CAS  Google Scholar 

  • Radovich TJ (2011) Biology and classification of vegetables. In: Handbook of vegetables and vegetable processing. Wiley Online Library, Hoboken, pp 1–22

  • Reddy V, Reddy K, Baker D (1991) Temperature effect on growth and development of cotton during the fruiting period. Agron J 83:211–217

    Google Scholar 

  • Rodríguez VM, Soengas P, Alonso-Villaverde V, Sotelo T, Cartea ME, Velasco P (2015) Effect of temperature stress on the early vegetative development of Brassica oleracea L. BMC Plant Biol 15:145

    Google Scholar 

  • Ruggieri V, Calafiore R, Schettini C, Rigano M, Olivieri F, Frusciante L, Barone A (2019) Exploiting genetic and genomic resources to enhance heat-tolerance in tomatoes. Agronomy 9:22

    CAS  Google Scholar 

  • Rykaczewska K (2013) The impact of high temperature during growing season on potato cultivars with different response to environmental stresses. Am J Plant Sci 4:2386

    Google Scholar 

  • Rykaczewska K (2015) The effect of high temperature occurring in subsequent stages of plant development on potato yield and tuber physiological defects. Am J Potato Res 92:339–349

    CAS  Google Scholar 

  • Sacco A, Di Matteo A, Lombardi N, Trotta N, Punzo B, Mari A, Barone A (2013) Quantitative trait loci pyramiding for fruit quality traits in tomato. Mol Breed 31:217–222

    CAS  Google Scholar 

  • Saeed A, Hayat K, Khan A, Iqbal S (2007) Heat tolerance studies in tomato (Lycopersicon esculentum Mill.). Int J Agric Biol 9:649–652

    Google Scholar 

  • Saha S, Hossain M, Rahman M, Kuo C, Abdullah S (2010) Effect of high temperature stress on the performance of twelve sweet pepper genotypes. Bangladesh J Agric Res 35:525–534

    Google Scholar 

  • Sato S, Peet M, Thomas J (2000) Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant Cell Environ 23:719–726

    Google Scholar 

  • Scheelbeek PF, Bird FA, Tuomisto HL, Green R, Harris FB, Joy EJ, Chalabi Z, Allen E, Haines A, Dangour AD (2018) Effect of environmental changes on vegetable and legume yields and nutritional quality. Proc Natl Acad Sci USA 115:6804–6809

    CAS  Google Scholar 

  • Sharkey TD, Zhang R (2010) High temperature effects on electron and proton circuits of photosynthesis. J Integr Plant Biol 52:712–722

    CAS  Google Scholar 

  • Slater AT, Cogan NO, Forster JW, Hayes BJ, Daetwyler HD (2016) Improving genetic gain with genomic selection in autotetraploid potato. Plant Genome. https://doi.org/10.3835/plantgenome2016.02.0021

    Article  Google Scholar 

  • Song A, Zhu X, Chen F, Gao H, Jiang J, Chen S (2014) A chrysanthemum heat shock protein confers tolerance to abiotic stress. Int J Mol Sci 15:5063–5078

    Google Scholar 

  • Sun H, Wu S, Zhang G, Jiao C, Guo S, Ren Y, Zhang J, Zhang H, Gong G, Jia Z (2017) Karyotype stability and unbiased fractionation in the paleo-allotetraploid Cucurbita genomes. Mol Plant 10:1293–1306

    CAS  Google Scholar 

  • TG Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635

    Google Scholar 

  • Tang L, Kwon S-Y, Kim S-H, Kim J-S, Choi JS, Cho KY, Sung CK, Kwak S-S, Lee H-S (2006) Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep 25(12):1380–1386

    CAS  Google Scholar 

  • Tang R, Zhu W, Song X, Lin X, Cai J, Wang M, Yang Q (2016) Genome-wide identification and function analyses of heat shock transcription factors in potato. Front Plant Sci 7:490

    Google Scholar 

  • Tang Y, Wen X, Lu Q, Yang Z, Cheng Z, Lu C (2007) Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol 143:629–638

    CAS  Google Scholar 

  • Tesfay SZ (2005) The effect of daylength and temperature on growth and ‘onset of bulbing’ in tropical cultivars of onion. MSc Thesis, Discipline of Crop Science, Faculty of Science and Agriculture, Africa, University of KwaZulu-Natal Pietermaritzburg, pp 1-163

  • Thakur AK, Singh KH, Sharma D, Singh L, Parmar N, Nanjundan J, Khan YJ (2018) Transgenic development for biotic and abiotic stress management in horticultural crops. In: Genetic engineering of horticultural crops. Elsevier, Amsterdam, pp 353–386

  • Thuy TL, Kenji M (2015) Effect of high temperature on fruit productivity and seed-set of sweet pepper (Capsicum annuum L.) in the field condition. J Agric Sci Technol A 5:515–520

    Google Scholar 

  • Trapero-Mozos A, Morris WL, Ducreux LJ, McLean K, Stephens J, Torrance L, Bryan GJ, Hancock RD, Taylor MA (2018) Engineering heat tolerance in potato by temperature‐dependent expression of a specific allele of HEAT‐SHOCK COGNATE 70. Plant Biotechnol J 16:197–207

    CAS  Google Scholar 

  • Tuberosa R (2012) Phenotyping for drought tolerance of crops in the genomics era. Front Physiol 3:347

    Google Scholar 

  • Ueta R, Abe C, Watanabe T, Sugano SS, Ishihara R, Ezura H, Osakabe Y, Osakabe K (2017) Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci Rep 7:507

    Google Scholar 

  • Urasaki N, Takagi H, Natsume S, Uemura A, Taniai N, Miyagi N, Fukushima M, Suzuki S, Tarora K, Tamaki M (2017) Draft genome sequence of bitter gourd (Momordica charantia), a vegetable and medicinal plant in tropical and subtropical regions. DNA Res 24:51–58

    CAS  Google Scholar 

  • Usman MG, Rafii M, Ismail M, Malek M, Abdul Latif M (2014) Heritability and genetic advance among chili pepper genotypes for heat tolerance and morphophysiological characteristics. Sci World J. https://doi.org/10.1155/2014/308042

    Article  Google Scholar 

  • Usman MG, Rafii MY, Ismail MR, Malek MA, Latif MA (2015) Expression of target gene Hsp70 and membrane stability determine heat tolerance in chili pepper. J Am Soc Hortic Sci 140:144–150

    CAS  Google Scholar 

  • Van Ginkel M, Ortiz R (2018) Cross the best with the best, and select the best: HELP in breeding selfing crops. Crop Sci 58:17–30

    Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Google Scholar 

  • Wang X, Xu Y, Hu Z, Xu C (2018) Genomic selection methods for crop improvement: current status and prospects. Crop J 6:330–340

    Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Cui M, Fuchigami L (2006) Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress. J Appl Hortic 8:87–90

    Google Scholar 

  • Wang Y, Xu P, Wu X, Wu X, Wang B, Huang Y, Hu Y, Lin J, Lu Z, Li G (2018) GourdBase: a genome-centered multi-omics database for the bottle gourd (Lagenaria siceraria), an economically important cucurbit crop. Sci Rep 8:1–8

    Google Scholar 

  • Wani SH, Choudhary M, Kumar P, Akram NA, Surekha C, Ahmad P, Gosal SS (2018) Marker-assisted breeding for abiotic stress tolerance in crop plants. In: Biotechnologies of crop improvement, vol 3. Springer, Cham, pp 1–23

  • Warland J, McKeown AW, McDonald MR (2006) Impact of high air temperatures on Brassicaceae crops in southern Ontario. Can J Plant Sci 86:1209–1215

    Google Scholar 

  • Wheeler T, Hadley P, Ellis R, Morison J (1993) Changes in growth and radiation use by lettuce crops in relation to temperature and ontogeny. Agric For Meteorol 66:173–186

    Google Scholar 

  • Wien HC (1997) The physiology of vegetable crops. CAB International, Wallingford

    Google Scholar 

  • Wu S, Lau KH, Cao Q, Hamilton JP, Sun H, Zhou C, Eserman L, Gemenet DC, Olukolu BA, Wang H (2018) Genome sequences of two diploid wild relatives of cultivated sweet potato reveal targets for genetic improvement. Nat Commun 9:1–12

    Google Scholar 

  • Wu S, Wang X, Reddy U, Sun H, Bao K, Gao L, Mao L, Patel T, Ortiz C, Abburi VL (2019) Genome of ‘Charleston Gray’, the principal American watermelon cultivar, and genetic characterization of 1,365 accessions in the US National Plant Germplasm System watermelon collection. Plant Biotechnol J 17:2246–2258

    CAS  Google Scholar 

  • Wurr D, Fellows JR, Fuller M (2004) Simulated effects of climate change on the production pattern of winter cauliflower in the UK. Sci Hortic 101:359–372

    Google Scholar 

  • Xie D, Xu Y, Wang J, Liu W, Zhou Q, Luo S, Huang W, He X, Li Q, Peng Q (2019) The wax gourd genomes offer insights into the genetic diversity and ancestral cucurbit karyotype. Nat Commun 10:1–12

    Google Scholar 

  • Xie L, Li X, Hou D, Cheng Z, Liu J, Li J, Mu S, Gao J (2019) Genome-wide analysis and expression profiling of the heat shock factor gene family in Phyllostachys edulis during development and in response to abiotic stresses. Forests 10:100

    Google Scholar 

  • Xu C, Jiao C, Sun H, Cai X, Wang X, Ge C, Zheng Y, Liu W, Sun X, Xu Y (2017) Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nat Commun 8:1–10

    Google Scholar 

  • Xu J, Driedonks N, Rutten MJ, Vriezen WH, de Boer G-J, Rieu I (2017) Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Mol Breed 37:58

    Google Scholar 

  • Yang L, Koo DH, Li Y, Zhang X, Luan F, Havey MJ, Jiang J, Weng Y (2012) Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J 71:895–906

    CAS  Google Scholar 

  • Yang X, Zhu W, Zhang H, Liu N, Tian S (2016) Heat shock factors in tomatoes: genome-wide identification, phylogenetic analysis and expression profiling under development and heat stress. PeerJ 4:e1961

    Google Scholar 

  • Yu B, Yan S, Zhou H, Dong R, Lei J, Chen C, Cao B (2018) Overexpression of CsCaM3 improves high temperature tolerance in cucumber. Front Plant Sci 9:797

    Google Scholar 

  • Zhang J, Zhao J, Xu Y, Liang J, Chang P, Yan F, Li M, Liang Y, Zou Z (2015) Genome-wide association mapping for tomato volatiles positively contributing to tomato flavor. Front Plant Sci 6:1042

    Google Scholar 

  • Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA 114:9326–9331

    CAS  Google Scholar 

  • Zhao Q, Chen W, Bian J, Xie H, Li Y, Xu C, Ma J, Guo S, Chen J, Cai X (2018) Proteomics and phosphoproteomics of heat stress-responsive mechanisms in spinach. Front Plant Sci 9:800

    Google Scholar 

  • Zhou S, Zhang P, Jing Z, Shi J (2013) Genome-wide identification and analysis of heat shock transcription factor family in cucumber (Cucumis sativus L.). Plant Omics 6:449

    CAS  Google Scholar 

  • Zhu X, Wang Y, Liu Y, Zhou W, Yan B, Yang J, Shen Y (2018) Overexpression of BcHsfA1 transcription factor from Brassica campestris improved heat tolerance of transgenic tobacco. PLoS ONE 13:e0207277

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saba Aleem.

Ethics declarations

Conflict of interest

There is no conflict of interest regarding this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleem, S., Sharif, I., Amin, E. et al. Heat tolerance in vegetables in the current genomic era: an overview. Plant Growth Regul 92, 497–516 (2020). https://doi.org/10.1007/s10725-020-00658-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-020-00658-5

Keywords

Navigation