Skip to main content
Log in

The fractional Landweber method for identifying the space source term problem for time-space fractional diffusion equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper is devoted to solve an inverse problem for identifying the source term of a time-fractional nonhomogeneous diffusion equation with a fractional Laplacian in a non-local boundary. Based on the expression of the solution for the direct problem, the inverse problem for searching the space source term is converted into solving the first kind of Fredholm integral equation. The conditional stability for the inverse source problem is investigated. The fractional Landweber method is used to deal with this inverse problem and the regularized solution is also obtained. Furthermore, the convergence rates for the regularized solution can be proved by using an a priori regularization parameter choice rule and an a posteriori parameter choice rule. Several numerical examples are given to show the proposed method is efficient and stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R, N.: The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Status Solidu B. 133, 425–430 (1986)

    Google Scholar 

  2. Staelen, R D., Hendy, A.S.: Numerically pricing double barrier options in a time-fractional black-scholes model. Comput. Math. Appl. 74(6), 1166–1175 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Berkowitz, B., Scher, H., SE, S.: Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour. Res. 36(1), 149–158 (2000)

    Google Scholar 

  4. Luchko, Y.: Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351(1), 218–223 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Luchko, Y.: Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374(2), 538–548 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Luchko, Y.: Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12(12), 538–548 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Luchko, Y.: Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 15(1), 141–160 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Bai, Z.B., Qiu, T.T.: Existence of positive solution for singular fractional differential equation. Appl. Math. Comput. 215(7), 2761–2767 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Yang, F., Zhang, P., Li, X.X.: The truncation method for the cauchy problem of the inhomogeneous helmholtz equation. Appl. Anal. 98(5), 991–1004 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Yang, F., Sun, Y.R., Li, X.X., Huang, C.Y.: The quasi-boundary value method for identifying the initial value of heat equation on a columnar symmetric domain. Numer. Algor. 82(2), 623–639 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Yang, F., Fan, P., Li, X.X.: Fourier truncation regularization method for a three-dimensional cauchy problem of the modified helmholtz equation with perturbed wave number. Mathematics 7, 705 (2019)

    Google Scholar 

  12. Yang, F., Fu, J.L., Li, X.X.: A potential-free field inverse schrödinger problem: optimal error bound analysis and regularization method. Inverse Probl. Sci. Engin. (2019)

  13. Liu, J.J., Yamamoto, M.: A backward problem for the time-fractional diffusion equation. Appl. Anal. 89(11), 1769–1788 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Wang, J.G., Wei, T., Zhou, Y.B.: Tikhonov regularization method for a backward problem for the time-fractional diffusion equation. Appl. Math. Model. 37(18-19), 8518–8532 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Wang, L.Y., Liu, J.J.: Data regularization for a backward time-fractional diffusion problem. Comput. Math. Appl. 64(11), 3613–3626 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Wei, T., Wang, J.G.: A modified quasi-boundary value method for the backward time-fractional diffusion problem. Math. Model. Num. 48(2), 603–621 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Tuan, N.H., Long, L.D., Tatar, S.: Tikhonov regularization method for a backward problem for the inhomogeneous time-fractional diffusion equation. Appl. Anal. 97(5), 842–863 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Yang, F., Ren, Y.P., Li, X.X.: The quasi-reversibility method for a final value problem of the time-fractional diffusion equation with inhomogeneous source. Math. Method Appl. Sci. 41(5), 1774–1795 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Yang, F., Zhang, Y., Li, X.X., Huang, C.Y.: The quasi-boundary value regularization method for identifying the initial value with discrete random value. Bound. Value Probl. 1(2018), 108 (2018)

    Google Scholar 

  20. Yang, F., Wang, N., Li, X.X.: A quasi-boundary regularization method for identifying the initial value of time-fractional diffusion equation on spherically symmetric domain. J. Inverse Ill-Pose. Prob 27(5), 609–621 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Yang, F., Fan, P., Li, X.X., Ma, X.Y.: Fourier truncation regularization method for a time-fractional backward diffusion problem with a nonlinear source. Mathematics (2019)

  22. Yang, F., Pu, Q., Li, X.X., Li, D.G.: The truncation regularization method for identifying the initial value on non-homogeneous time-fractional diffusion-wave equations.Mathematics (2019)

  23. Yang, F., Zhang, Y., Liu, X., Li, X.X.: The quasi-boundary value method for identifying the initial value of the space-time fractional diffusion equation. Acta Math. Sci. 40(3), 641–658 (2020)

    MathSciNet  Google Scholar 

  24. Yang, F., Pu, Q., Li, X.X.: The fractional tikhonov regularization methods for identifying the initial value problem for a time-fractional diffusion equation. J. Comput. Appl. Math. 380, 112998 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Yang, F., Zhang, Y., XX, L.: Landweber iterative method for identifying the initial value problem of the time-space fractional diffusion-wave equation. Numer. Algor. 83, 1509–1530 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Zhang, Y., Xu, X.: Inverse source problem for a fractional diffusion equation. Inverse Probl. 27(3), 035010 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Wei, T., L, X.L., Li, Y.S.: An inverse time-dependent source problem for a time-fractional diffusion equation. Inverse Probl. 32(8), 085003 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Wei, T., Wang, J.G.: A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation. Appl. Numer. Math. 78(4), 95–111 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Wang, J.G., Zhou, Y.B., Wei, T.: Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation. Appl. Numer. Math. 68, 39–57 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Murio, D.A., CE, M.: Source terms identification for time fractional diffusion equation. Rev. Colomb. Mat. 42(1), 25–46 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Yang, F., Ren, Y.P., Li, X.X.: Landweber iterative method for identifying a space-dependent source for the time-fractional diffusion equation. Bound. Value Probl. 2017(1), 163 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Yang, F., Fu, C.L.: The quasi-reversibility regularization method for identifying the unknown source for time fractional diffusion equation. Appl. Math. Model. 39, 1500–1512 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Yang, F., Fu, C.L.: Tikhonov regularization method for identifying the space-dependent source for time-fractional diffusion equation on a columnar symmetric domain. Adv. Differ. Equ. 2020, 128 (2020)

    MathSciNet  Google Scholar 

  34. Xiong, X.T., Guo, H.B., Li, X.H.: An inverse problem for a fractional diffusion equation. J. Comput. Appl. Math. 236, 4474–4484 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Babaei, A.: Solving a time-fractional inverse heat conduction problem with an unknown nonlinear boundary condition. J. Math. Chem. 7(1), 85–106 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Varlamov, V.: Long-time asymptotics for the nonlinear heat equation with a fractional laplacian in a ball. Studia Math. 142(1), 71–99 (2000)

    MathSciNet  MATH  Google Scholar 

  37. Bogdan, K., Grzywny, T., Ryznar, M.: Heat kernel estimates for the fractional laplacian with direchlet conditions. Ann. Probab. 38(5), 1901–1923 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Li, M., Xiong, X.T.: On a fractional backward heat conduction problem: Application to deblurrring. Comput. Math. Appl. 64, 2594–2602 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Blasio, G.D., Volzone, B.: Comparison and regularity results for the fractional laplacian via symmetrization methods. J. Differ. Equations 253(9), 2593–2615 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Chen, Z.Q., Meerschaert, M.M., Nane, E.: Space-time fractional diffusion on bounded domains. Comput. Math. Appl. 393(2), 479–488 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Bonito, A., Lei, W.Y., Pasciak, J.E.: The approximation of parabolic equations involving fractional powers of elliptic operator. J. Comput. Appl. Math. 315(1), 32–48 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Hu, Y., Li, C.P., Li, H.F.: The finite difference method for caputo-type parabolic equation with fractional laplacian: One-dimension case. Chaos, Soliton. Fract. 102, 319–326 (2017)

    MathSciNet  MATH  Google Scholar 

  43. X. X. C. X. Wang, J.L.: Fractional tikhonov regularization method for a time-fractional backward heat equation with a fractional laplacian. J. Partial Differ. Equ. 31(4), 332–342 (2018)

    MathSciNet  Google Scholar 

  44. X.X. Q.Z. Xiong, X.T.: A modified iterative regularization method for ill-posed problems. Appl. Numer. Math. 122, 108–128 (2017)

    MathSciNet  Google Scholar 

  45. Koba, H., Matsuoka, H.: Generalized quasi-reversibility method for a backward heat equation with a fractional laplacian. J. Math Anal. Appl. 35(1), 47–57 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Podlubny, I.: Fractional differential equations. J. Partial Differ. Equ., 31 (2018)

  47. Pollard, H.: The completely monotonic character of the mittag leffler function eα(−x). Bull. Am. Math. Soc 54, 1115–1116 (1948)

    MathSciNet  MATH  Google Scholar 

  48. Yang, F., Wang, N., Li, X.X.: Landweber iterative method for an inverse source problem of time-fractional diffusion-wave equation on spherically symmetric domian. J. Appl. Anal. Comput. 10(2), 514–529 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The project is supported by the National Natural Science Foundation of China (No.11961044), the Doctor Fund of Lan Zhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yang.

Additional information

Author contributions

The main idea of the article is given by Fan Yang and Qu Pu. We confirmed the steps of the article. This view is shared by all the authors.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Pu, Q. & Li, XX. The fractional Landweber method for identifying the space source term problem for time-space fractional diffusion equation. Numer Algor 87, 1229–1255 (2021). https://doi.org/10.1007/s11075-020-01006-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-01006-4

Keywords

Mathematics Subject Classification (2010)

Navigation