Skip to main content

Advertisement

Log in

Rapid non-resonant intermodal targeted energy transfer (IMTET) caused by vibro-impact nonlinearity

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper describes a rapid and efficient nonlinear non-resonance mechanism for low-to-high-frequency energy scattering, which is referred to as intermodal targeted energy transfer (IMTET). To present the IMTET mechanism in the most basic setting, a blast-excited two-DOF linear system with a single clearance is considered. The impact interactions facilitate rapid transfer of oscillation energy from an initially excited, low-frequency symmetric mode to a high-frequency antisymmetric mode with substantially higher modal dissipative capacity. Numerical exploration reveals almost immediate drastic reduction of the system response amplitude caused by nonlinear “modal energy redistribution” within its modal space. Characteristic damping time of the system exhibits a multi-fold reduction. This process requires a rather limited number of impacts; only one or two impacts are enough to cause an immediate significant suppression of the system response. The results are robust over a broad range of blast amplitudes. Matrix formalism based on eigenvalue decomposition of the state matrix is developed to obtain an implicit analytic description of the process. Then, estimations for the main characteristics of the IMTET process, such as activation threshold and expected efficiency, are obtained. The results show a rather weak dependence of the characteristic damping time of the system on the coupling strength between oscillators, and relatively strong dependence on the ratio of the clearance to the blast intensity. The findings reported in this study have potential applications for passive, rapid and efficient shock mitigation and energy absorption in engineering structures under extreme loads by redistributing the input shock energy to high-frequency structural modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F., Yao, J.T.P.: Structural control: past, present, and future. J. Eng. Mech. 123(9), 897–971 (1997)

    Google Scholar 

  2. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Solid Mechanics and Its Applications. Springer, Dordrecht (2008)

    MATH  Google Scholar 

  3. Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems. J. Vib. Acoust. 123, 324–332 (2001)

    Google Scholar 

  4. Watts, P.: On a method of reducing the rolling of ships at sea. Trans. INA 24, 165–191 (1883)

    Google Scholar 

  5. Ormondroyd, J., Den Hartog, J.P.: Theory of the dynamic vibration absorber. ASME J. Appl. Mech. 50, 9–22 (1928)

    Google Scholar 

  6. Den Hartog, J.P.: Mechanical Vibrations. McGraw-Hill Book Co., Inc., New York (1956)

    MATH  Google Scholar 

  7. Thompson, A.G.: Optimum tuning and damping of a dynamic vibration absorber applied to a force excited and damped primary system. J. Sound Vib. 77(3), 403–415 (1981)

    MATH  Google Scholar 

  8. Soong, T.T., Dargush, G.F.: Passive energy dissipation systems in structural engineering. Wiley, New York (1997)

    Google Scholar 

  9. Fischer, O.: Wind-excited vibrations—solution by passive dynamic vibration absorbers of different types. J. Wind Eng. Ind. Aerodyn. 95(9), 1028–1039 (2007)

    Google Scholar 

  10. Soto, M.G., Adeli, H.: Tuned mass dampers. Arch. Comput. Methods Eng. 20(4), 419–431 (2013)

    Google Scholar 

  11. Starosvetsky, Y., Gendelman, O.V.: Interaction of nonlinear energy sink with a two degrees of freedom linear system: internal resonance. J. Sound Vib. 329, 1836–1852 (2010)

    Google Scholar 

  12. Quinn, D.D., Hubbard, S., Wierschem, N., Al-Shudeifat, M.A., Ott, R.J., Luo, J., et al.: Equivalent modal damping, stiffening and energy exchanges in multi-degree-of-freedom systems with strongly nonlinear attachments. Proc. Inst. Mech. Eng. 226(K2), 122–146 (2012)

    Google Scholar 

  13. Luo, J., Wierschem, N.E., Hubbard, S.A., Fahnestock, L.A., Quinn, D.D., McFarland, D.M., Spencer, B.F., Vakakis, A.F., Bergman, L.A.: Large-scale experimental evaluation and numerical simulation of a system of nonlinear energy sinks for seismic mitigation. Eng. Struct. 77, 34–48 (2014)

    Google Scholar 

  14. Luo, J., Wierschem, N.E., Fahnestock, L.A., Spencer, B.F., Quinn, D.D., McFarland, D.M., Vakakis, A.F., Bergman, L.A.: Design, simulation, and large-scale testing of an innovative vibration mitigation device employing essentially nonlinear elastomeric springs. Earthq. Eng. Struct. Dyn. 43(12), 1829–1851 (2014)

    Google Scholar 

  15. Gendelman, O.V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. I: description of response regimes. Nonlinear Dyn. 51, 31–46 (2007)

    MATH  Google Scholar 

  16. Starosvetsky, Y., Gendelman, O.V.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. II: optimization of a nonlinear vibration absorber. Nonlinear Dyn. 51, 47–57 (2007)

    MATH  Google Scholar 

  17. Starosvetsky, Y., Gendelman, O.V.: Response regimes of linear oscillator coupled to nonlinear energy sink with harmonic forcing and frequency detuning. J. Sound Vib. 315, 746–765 (2008)

    Google Scholar 

  18. Starosvetsky, Y., Gendelman, O.V.: Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry. Physica D 237, 1719–1733 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Starosvetsky, Y., Gendelman, O.V.: Vibration absorption in systems with a nonlinear energy sink: nonlinear damping. J. Sound Vib. 324, 916–939 (2009)

    Google Scholar 

  20. Andersen, D., Starosvetsky, Y., Vakakis, A.F., Bergman, L.A.: Dynamic instabilities in coupled oscillators induced by geometrically nonlinear damping. Nonlinear Dyn. 67, 807–827 (2012)

    MathSciNet  Google Scholar 

  21. Taleshi, M., Dardel, M., Pashaie, M.H.: Passive targeted energy transfer in the steady state dynamics of a nonlinear plate with nonlinear absorber. Chaos Sol. Fract. 92, 56–72 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Qiu, D., Seguy, S., Paredes, M.: Tuned nonlinear energy sink with conical spring: Design theory and sensitivity analysis. ASME. J. Mech. Des. 140(1), 011404 (2018)

    Google Scholar 

  23. Qiu, D., Paredes, M., Seguy, S.: Variable pitch spring for nonlinear energy sink: Application to passive vibration control. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233(2), 611–622 (2019)

    Google Scholar 

  24. Vakakis, A.F.: Shock isolation through the use of nonlinear energy sinks. J. Vib. Control 9(1–2), 79–93 (2003)

    MATH  Google Scholar 

  25. Georgiadis, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Shock isolation through passive energy pumping I: a system with piecewise linear stiffnesses. In: Proceedings of ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, IL, USA, Paper VIB-48490, pp. 1569–1574 (2003)

  26. AL-Shudeifat, M.A., Wierschem, N., Quinn, D.D., Vakakis, A.F., Bergman, L.A., Spencer, B.F.: Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation. Int. J. Nonlinear Mech. 52, 96–109 (2013)

    Google Scholar 

  27. AL-Shudeifat, M.A., Vakakis, A.F., Bergman, L.A.: Shock mitigation by means of low-to high frequency nonlinear targeted energy transfers in a largescale structure. J. Comput. Nonlinear Dyn. 11(2), 021006 (2016)

    Google Scholar 

  28. Saeed, A.S., AL-Shudeifat, M.A., Vakakis, A.F., Cantwell, W.J.: Rotary-impact nonlinear energy sink for shock mitigation: analytical and numerical investigations. Arch. Appl. Mech. 90, 495–521 (2020)

    Google Scholar 

  29. Wierschem, N.E., Hubbard, S.A., Luo, J., Fahnestock, L.A., Spencer, B.F., McFarland, D.M., Quinn, D.D., Vakakis, A.F., Bergman, L.A.: Response attenuation in a large-scale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers. J. Sound Vib. 389, 52–72 (2017)

    Google Scholar 

  30. Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A., Kerschen, G.: Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dyn. 50, 651–677 (2007)

    MATH  Google Scholar 

  31. Nucera, F., Iacono, F.L., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: experimental results. J. Sound Vib. 313, 57–76 (2008)

    Google Scholar 

  32. Nucera, F., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: computational results. J. Sound Vib. 329, 2973–2994 (2010)

    Google Scholar 

  33. Lu, X., Liu, Z., Lu, Z.: Optimization design and experimental verification of track nonlinear energy sink for vibration control under seismic excitation. Struct. Control Health Monit. 24, e2033 (2017)

    Google Scholar 

  34. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Suppression of aeroelastic instability using broadband passive targeted energy transfers I: theory. AIAA J. 45, 693–711 (2007)

    Google Scholar 

  35. Gendelman, O.V., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: Asymptotic analysis of passive nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic flow. SIAM J. Appl. Math. 70, 1655–1677 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Vaurigaud, B., Manevitch, L.I., Lamarque, C.H.: Passive control of aeroelastic instability in a long span bridge model prone to coupled flutter using targeted energy transfer. J. Sound Vib. 330(11), 2580–2595 (2011)

    Google Scholar 

  37. Bichiou, Y., Hajj, M.R., Nayfeh, A.H.: Effectiveness of a nonlinear energy sink in the control of an aeroelastic system. Nonlinear Dyn. 86(4), 2161–2177 (2016)

    MathSciNet  Google Scholar 

  38. Ebrahimzade, N., Dardel, M., Shafaghat, R.: Investigating the aeroelastic behaviors of rotor blades with nonlinear energy sinks. AIAA J. 56(7), 2256–2869 (2018)

    Google Scholar 

  39. Gourdon, E., Alexander, N.A., Taylor, C.A., Lamarque, C.H., Pernot, S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results. J. Sound Vib. 300(3–5), 522–551 (2007)

    Google Scholar 

  40. Sapsis, T.P., Quinn, D.D., Vakakis, A.F., Bergman, L.A.: Effective stiffening and damping enhancement of structures with strongly nonlinear local attachments. J. Vib. Acoust. 134(1), 011016 (2012)

    Google Scholar 

  41. Gendelman, O.V., Sapsis, T.P., Vakakis, A.F., Bergman, L.A.: Enhanced passive targeted energy transfer in strongly nonlinear mechanical oscillators. J. SoundVib. 330, 1–8 (2011)

    Google Scholar 

  42. Wierschem, N.E., Quinn, D.D., Hubbard, S.A., Al- Shudeifat, M.A., McFarland, D.M., Luo, J., Fahnestock, L.A., Spencer, B.F., Vakakis, A.F., Bergman, L.A.: Passive damping enhancement of a two-degree-of-freedom system through a strongly nonlinear two-degree-of-freedom attachment. J. Sound Vib. 331, 5393–5407 (2012)

    Google Scholar 

  43. Gendelman, O.V.: Targeted energy transfer in systems with non-polynomial non-linearity. J. Sound Vib. 315, 732–745 (2008)

    Google Scholar 

  44. Gendelman, O.V., Sigalov, G., Manevitch, L.I., Mane, M., Vakakis, A.F., Bergman, L.A.: Dynamics of an eccentric rotational nonlinear energy sink. J. Appl. Mech. 79(1), 011012 (2012)

    Google Scholar 

  45. Sigalov, G., Gendelman, O.V., AL-Shudeifat, M.A., Manevitch, L.I., Vakakis, A.F., Bergman, L.A.: Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink. Nonlinear Dyn. 69, 1693–1704 (2012)

    MathSciNet  Google Scholar 

  46. Saeed, A.S., AL-Shudeifat, M.A., Vakakis, A.F.: Rotary-oscillatory nonlinear energy sink of robust performance. Int. J. Nonlinear Mech. 117, 103249 (2019)

    Google Scholar 

  47. Manevitch, L.I., Sigalov, G., Romeo, F., Bergman, L.A., Vakakis, A.F.: Dynamics of a linear oscillator coupled to a bistable light attachment: analytical study. ASME J. Appl. Mech. 81(4), 041011 (2014)

    Google Scholar 

  48. Sigalov, G., Bergman, L.A., Vakakis, A.F.: Dynamics of a Linear oscillator coupled to a bistable light attachment: numerical study. ASME J. Comput. Nonlinear Dyn. 10(1), 011007 (2014)

    Google Scholar 

  49. Romeo, F., Sigalov, G., Bergman, L.A., Vakakis, A.F.: Dynamics of a linear oscillator coupled to a bistable light attachment: numerical study. ASME. J. Comput. Nonlinear Dyn. 10(1), 011007 (2015)

    Google Scholar 

  50. AL-Shudeifat, M.A.: Highly efficient nonlinear energy sink. Nonlinear Dyn. 76, 1905–1920 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Mattei, P.O., Ponçot, R., Pachebat, M., Côte, R.: Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment. J. Sound Vib. 373, 29–51 (2016)

    Google Scholar 

  52. Fang, X., Wen, J., Yin, J., Yu, D.: Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer damping. Nonlinear Dyn. 87(4), 2677–2695 (2017)

    Google Scholar 

  53. Habib, G., Romeo, F.: The tuned bistable nonlinear energy sink. Nonlinear Dyn. 89(1), 179–196 (2017)

    Google Scholar 

  54. Qiu, D., Li, T., Seguy, S., Paredes, M.: Efficient targeted energy transfer of bistable nonlinear energy sink: application to optimal design. Nonlinear Dyn. 92(2), 443–461 (2018)

    Google Scholar 

  55. Lamarque, C.H., Gendelman, O.V., Savadkoohi, A.T., Etcheverria, E.: Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mech. 221(1–2), 175 (2011)

    MATH  Google Scholar 

  56. Karayannis, I., Vakakis, A.F., Georgiades, F.: Vibro-impact attachments as shock absorbers. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 222, 1899–1908 (2008)

    Google Scholar 

  57. Lee, Y.S., Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments. Phys. Nonlinear Phenom. 238, 1868–1896 (2009)

    MATH  Google Scholar 

  58. Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Targeted energy transfer under harmonic forcing with a vibro-impact nonlinear energy sink: analytical and experimental developments. J. Vib. Acoust. 137, 031008 (2015)

    Google Scholar 

  59. Gourc, E., Seguy, S., Michon, G., Berlioz, A., Mann, B.P.: Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink. J. Sound Vib. 355, 392–406 (2015)

    Google Scholar 

  60. Gendelman, O.V., Alloni, A.: Dynamics of forced system with vibro-impact energy sink. J. Sound Vib. 358, 301–314 (2015)

    Google Scholar 

  61. Wang, J., Wierschem, N., Spencer, B.F., Lu, X.: Numerical and experimental study of the performance of a single-sided vibro-impact track nonlinear energy sink. Earthq. Eng. Struct. Dyn. 45, 635–652 (2016)

    Google Scholar 

  62. Li, T., Seguy, S., Berlioz, A.: On the dynamics around targeted energy transfer for vibro-impact nonlinear energy sink. Nonlinear Dyn. 87, 1453–1466 (2017)

    Google Scholar 

  63. Darabi, A., Leamy, M.J.: Clearance-type nonlinear energy sinks for enhancing performance in electroacoustic wave energy harvesting. Nonlinear Dyn. 87, 2127–2146 (2017)

    Google Scholar 

  64. Li, W., Wierschem, N.E., Li, X., Yang, T.: On the energy transfer mechanism of the single-sided vibro-impact nonlinear energy sink. J. Sound Vib. 437, 166–179 (2018)

    Google Scholar 

  65. Li, W., Wierschem, N.E., Li, X., Yang, T., Brennan, M.J.: Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam. Nonlinear Dyn. 100, 951–971 (2020)

    Google Scholar 

  66. Kovaleva, A., Manevitch, L.I.: Resonance energy transport and exchange in oscillator arrays. Phys. Rev. E 88(2), 022904 (2013)

    Google Scholar 

  67. Kovaleva, A., Manevitch, L.I.: Autoresonance versus localization in weakly coupled oscillators. Physica D 320, 1–8 (2016)

    MathSciNet  MATH  Google Scholar 

  68. Manevitch, L.I., Kovaleva, A.: Autoresonant dynamics of weakly coupled oscillators. Nonlinear Dyn. 84, 683–695 (2016)

    MathSciNet  Google Scholar 

  69. Babitsky, V.I.: Theory of vibro-impact systems. Springer, Berlin (1998)

    MATH  Google Scholar 

  70. Gendelman, O.V.: Analytic treatment of a system with a vibro-impact nonlinear energy sink. J. Sound Vib. 331(21), 4599–4608 (2012)

    Google Scholar 

  71. Manevich, L.I., Gendelman, O.V.: Oscillatory models of vibro-impact type for essentially nonlinear systems. Proc Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 222, 2007–2043 (2008)

    Google Scholar 

  72. Babitsky, V.I., Krupenin, V.L.: Vibrations of Strongly Nonlinear Discontinuous Systems. Springer, Berlin (2001)

    MATH  Google Scholar 

  73. Fidlin, A.: On the oscillations in discontinuous and unconventionally strong excited systems: asymptotic approaches and dynamic effects. Doctoral Dissertation, Department of Mechanical Engineering, University of Karlsruhe (2002)

  74. Zhuravlev, V.F.: Investigation of certain vibro-impact systems by the method of non-smooth transformations. Izvestiva AN SSSR Mehanika Tverdogo Tela (Mechanics of Solids) 12, 24–28 (1976)

    Google Scholar 

  75. Pilipchuk, V.N.: Analytical study of vibrating systems with strong non-linearities by employing saw-tooth time transformations. J. Sound Vib. 192(1), 43–64 (1996)

    MathSciNet  MATH  Google Scholar 

  76. Kobrinskii, A.E.: Dynamics of Mechanisms with Elastic Connections and Impact Systems. Iliffe Books, London (1969)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Israel Science Foundation (Grant No. 1696/17), to the Neubauer Family foundation and to the Lady Davis Fellowship Trust for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Gendelman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gzal, M., Fang, B., Vakakis, A.F. et al. Rapid non-resonant intermodal targeted energy transfer (IMTET) caused by vibro-impact nonlinearity. Nonlinear Dyn 101, 2087–2106 (2020). https://doi.org/10.1007/s11071-020-05909-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05909-8

Keywords

Navigation