Skip to main content
Log in

Identification and Robust Controllers for an Electrostatic Microgripper

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

In this paper, it is presented system identification and design of robust force controllers for an electrostatic microgripper grabbing a microparticle.

Methods

Firstly, it is analysed the most common models in the literature and then the identification process is performed. It is identified a family of models of Box–Jenkins type. Linear controllers of increasing complexity are designed, which are of low order aiming to reduce the computational burden in real-time. The controllers must have robustness of stability and performance.

Results and conclusions

Simulations are performed in order to validate the controllers, which have robustness of stability and performance. Suggestions of future work are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abondance T, Jayaram K, Jafferis NT, Shum J, Wood RJ (2020) Piezoelectric grippers for mobile micromanipulation. IEEE Robot Autom Lett 5(3):4407–4414

    Article  Google Scholar 

  2. Andersen KN, Petersen DH, Carlson K, Mølhave K, Sardan O, Horsewell A, Eichhorn V, Fatikow S, Bøggild P (2009) Multimodal electrothermal silicon microgrippers for nanotube manipulation. IEEE Trans Nanotechnol 8(1):76–85

    Article  Google Scholar 

  3. Boudaoud M, De Faria MG, Le Gorrec Y, Haddab Y, Lutz P (2014) An output feedback lpv control strategy of a nonlinear electrostatic microgripper through a singular implicit modeling. Control Eng Pract 28:97–111

    Article  Google Scholar 

  4. Boudaoud M, Haddab Y, Le Gorrec Y (2013) Modeling and optimal force control of a nonlinear electrostatic microgripper. IEEE/ASME Trans Mechatron 18(3):1130–1139

    Article  Google Scholar 

  5. Boudaoud M, Le Gorrec Y, Haddab Y, Lutz P (2015) Gain scheduling control of a nonlinear electrostatic microgripper: Design by an eigenstructure assignment with an observer-based structure. IEEE Trans Control Syst Technol 23(4):1255–1267

    Article  Google Scholar 

  6. Carrozza MC, Eisinberg A, Menciassi A, Campolo D, Micera S, Dario P (2000) Towards a force-controlled microgripper for assembling biomedical microdevices. J Micromech Microeng 10(2):271

    Article  Google Scholar 

  7. Chen X, Deng Z, Hu S, Gao J, Gao X (2020) Designing a novel model of 2-DOF large displacement with a stepwise piezoelectric-actuated microgripper. Microsyst Technol 26(9):2809–2816

    Article  Google Scholar 

  8. De Pasquale G, Somà A (2010) Dynamic identification of electrostatically actuated mems in the frequency domain. Mech Syst Signal Process 24(6):1621–1633

    Article  Google Scholar 

  9. Van den Hof P, Bombois X, Course LND (2004) System identification for control. Delft Center for Systems and Control, TU-Delft. Lecture notes, Dutch Institute for Systems and Control (DISC)

  10. Kalaiarasi AR, Thilagar SH (2012) Design and modeling of electrostatically actuated microgripper. In: Proceedings of 2012 IEEE/ASME 8th IEEE/ASME international conference on mechatronic and embedded systems and applications, pp 7–11

  11. Kim K, Liu X, Zhang Y, Sun Y (2008) Nanonewton force-controlled manipulation of biological cells using a monolithic mems microgripper with two-axis force feedback. J Micromech Microeng 18(5):055013

    Article  Google Scholar 

  12. Liu X, Fernandes R, Jurisicova A, Casper RF, Sun Y (2010) In situ mechanical characterization of mouse oocytes using a cell holding device. Lab Chip 10(16):2154–2161

    Article  Google Scholar 

  13. Liu X, Kim K, Zhang Y, Sun Y (2009) Nanonewton force sensing and control in microrobotic cell manipulation. Int J Robot Res 28(8):1065–1076

    Article  Google Scholar 

  14. Ljung L (2007) Practical issues of system identification. Linköping University Electronic Press, Linköping

    Google Scholar 

  15. Mayyas M, Stephanou H (2009) Electrothermoelastic modeling of mems gripper. Microsyst Technol 15(4):637–646

    Article  Google Scholar 

  16. Mayyas M, Zhang P, Lee WH, Shiakolas P, Popa D (2007) Design tradeoffs for electrothermal microgrippers. In: Proceedings 2007 IEEE international conference on robotics and automation, pp 907–912

  17. Menciassi A, Eisinberg A, Izzo I, Dario P (2004) From “macro” to “micro” manipulation: models and experiments. IEEE/ASME Trans Mechatron 9(2):311–320

    Article  Google Scholar 

  18. Nelson BJ, Sun Y, Greminger MA (2005) Microrobotics for molecular biology: Manipulating deformable objects at the microscale. In: Robotics research. The eleventh international symposium. Springer, pp 115–124

  19. Piriyanont B, Moheimani SOR, Bazaei A (2013) Design and control of a mems micro-gripper with integrated electro-thermal force sensor. In: 2013 Australian control conference, pp 479–484

  20. Rakotondrabe M, Clevy C, Lutz P (2007) Modelling and robust position/force control of a piezoelectric microgripper. In: 2007 IEEE international conference on automation science and engineering, pp 39–44

  21. Sakar MS, Eyckmans J, Pieters R, Eberli D, Nelson BJ, Chen CS (2016) Cellular forces and matrix assembly coordinate fibrous tissue repair. Nat Commun 7:11036

    Article  Google Scholar 

  22. Savia M, Koivo HN (2009) Contact micromanipulation-survey of strategies. IEEE/ASME Trans Mechatron 14(4):504–514

    Article  Google Scholar 

  23. Sheikh SA, Shanmuganantham T (2014) A novel design microgripper based on electrothermal expansion principle. In: 2014 international conference on computer communication and informatics, pp 1–5

  24. Takeichi Y, Inami N, Ueno T, Saito K, Otori H, Sagayama R, Kumai R, Ono K (2014) Micromanipulation and pick-up system for X-ray diffraction characterization of micrometer-sized single particles. In: Journal of Physics: conference series, vol 502. 1st Conference on Light and Particle Beams in Materials Science 2013. IOP Publishing, p 012008

  25. Vargas-Chable P, Ferrara-Bello CA, Sandoval-Reyes JO, Tecpoyotl-Torres M, Varona J (2019) A novel electrothermal compliance microgripper. In: 2019 international conference on mechatronics, electronics and automotive engineering (ICMEAE), pp 74–78

  26. Vurchio F, Orsini F, Scorza A, Sciuto SA (2019) Functional characterization of mems microgripper prototype for biomedical application: preliminary results. In: 2019 IEEE international symposium on medical measurements and applications (MeMeA), pp 1–6

  27. Wang F, Shi B, Huo Z, Tian Y, Zhao X, Zhang D (2019) Smooth displacement/force switching control of a piezoelectric actuated microgripper for micro manipulation. In: 2019 IEEE international conference on manipulation, manufacturing and measurement on the nanoscale (3M-NANO), pp 216–219

  28. Xu Q (2013) Precision position/force interaction control of a piezoelectric multimorph microgripper for microassembly. IEEE Trans Autom Sci Eng 10(3):503–514

    Article  Google Scholar 

  29. Younis MI (2011) Vibrations of lumped-parameter systems. In: MEMS linear and nonlinear statics and dynamics. Springer, pp 13–56

Download references

Acknowledgements

The project (Convênio no. 01.0037.00/2014, SICONV no. 814255) is supported by MCTIC (Ministério da Ciência, Tecnologia, Inovações e Comunicações), CAPES, CNPq and IPT, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Colón.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felix, A.A., Colón, D., Verona, B.M. et al. Identification and Robust Controllers for an Electrostatic Microgripper. J. Vib. Eng. Technol. 9, 389–397 (2021). https://doi.org/10.1007/s42417-020-00241-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-020-00241-2

Keywords

Navigation