Skip to main content
Log in

Large Deviations of the Range of the Planar Random Walk on the Scale of the Mean

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We prove an upper large deviation bound on the scale of the mean for a symmetric random walk in the plane satisfying certain moment conditions. This result complements the study by Phetpradap for the random walk range, which is restricted to dimension three and higher, and of van den Berg, Bolthausen and den Hollander, for the volume of the Wiener sausage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Note that a variety of probability measures is being used throughout the text. As a rule of thumb, mathbb denotes a measure on continuum objects, while standard font refers to discrete random variables. For more details, see Sect. 5.

  2. One uses Jensen’s inequality to bound \(E_0\left[ {{\mathcal {R}} }^k_n\right] \) from above and Theorem 2 with Theorem 5 for the lower bound.

  3. see Equation (1.8) in that reference and apply a change of variables \(u\mapsto a/u\).

References

  1. Asselah, A., Schapira, B.: Deviations for the Capacity of the Range of a Random Walk (2018). arxiv preprint arXiv:1807.02325

  2. Asselah, A., Schapira, B., Sousi, P.: Capacity of the range of random walk on \({\mathbb{Z}}^4\). Ann. Probab. 47, 1447–1497 (2019)

    Article  MathSciNet  Google Scholar 

  3. Asselah, A., Schapira, B., Sousi, P.: Capacity of the range of random walk on \({\mathbb{Z}}^d\). Trans. Am. Math. Soc. 11, 7627–7645 (2018)

    Article  Google Scholar 

  4. Bass, R. F.; Chen, X. and Rosen, J., Moderate deviations for the range of planar random walks. Mem. Am. Math. Soc., 198, viii+82 pp (2009)

  5. Bass, R.F., Kumagai, T.: Laws of the iterated logarithm for the range of random walks in two and three dimensions. Ann. Probab. 30, 1369–1396 (2002)

    Article  MathSciNet  Google Scholar 

  6. Bolthausen, E.: Markov process large deviations in \(\tau \)-topology. Stoch. Process. Appl. 25(1), 95–108 (1987)

    Article  MathSciNet  Google Scholar 

  7. Chen, X.: Random Walk Intersections: Large Deviations and Related Topics Mathematical Surveys and Monographs. American Mathematical Society, Providence (2010)

    Book  Google Scholar 

  8. Dvoretzky, A., Erdős, P.: Some problems on random walk in space. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 353–367 (1950)

  9. Deligiannidis, G., Gouezel, S., Kosloff, Z.: Boundary of the Range of a Random Walk and the Fölner Property (2018). arxiv preprint arXiv:1810.10454

  10. den Hollander, WThF: Random walks on lattices with randomly distributed traps. I. The average number of steps until trapping. J. Stat. Phys. 3–4, 331–367 (1984)

    Article  MathSciNet  Google Scholar 

  11. den Hollander, WThF, Weiss, G.H.: On the range of a constrained random walk. J. Appl. Probab. 25(3), 451–463 (1988)

    Article  MathSciNet  Google Scholar 

  12. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time. IV. Commun. Pure Appl. Math. 36(2), 183–212 (1983)

    Article  MathSciNet  Google Scholar 

  13. Donsker, M.D., Varadhan, S.R.S.: On the number of distinct sites visited by a random walk. Commun. Pure Appl. Math. 32(6), 721–747 (1979)

    Article  MathSciNet  Google Scholar 

  14. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications Stochastic. Modelling and Applied Probability, vol. 38. Springer, Berlin (2010)

    Book  Google Scholar 

  15. Einmahl, U.: Extensions of results of Komlós, Major, and Tusnády to the multivariate case. J. Multivar. Anal. 28(1), 20–68 (1989)

    Article  MathSciNet  Google Scholar 

  16. Gantert, N., Popov, S., Vachkovskaia, M.: On the Range of a Two-Dimensional Conditioned Simple Random Walk (2018). arxiv preprint arXiv:1804.00291

  17. Hamana, Y.: On the range of pinned random walks. Tohoku Math. J. (2) 58(3), 329–357 (2006)

    Article  MathSciNet  Google Scholar 

  18. Hamana, Y., Kesten, H.: A large-deviation result for the range of random walk and for the Wiener sausage. Probab. Theory Rel. Fields 120(2), 183–208 (2001)

    Article  MathSciNet  Google Scholar 

  19. Jain, N., Orey, S.: On the range of random walk. Israel J. Math. 6(1968), 373–380 (1969)

    MathSciNet  MATH  Google Scholar 

  20. Jain, N., Pruitt, W.E.: The range of transient random walk. J. Anal. Math. 24, 369–393 (1971)

    Article  MathSciNet  Google Scholar 

  21. Le Gall, J., Rosen, J.: The range of stable random walks. Ann. Probab. 19(2), 650–705 (1991)

    Article  MathSciNet  Google Scholar 

  22. Le Jan, Y.: Markov paths, loops and fields. Lectures from the 38th Probability Summer School held in Saint-Flour, 2008. École d’Été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School]. Springer, Heidelberg, viii+124 pp (2011)

  23. Lawler, G.F., Limic, V.: Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics, vol. 123. Cambridge University Press, Cambridge. xii+364 pp. (2010)

  24. Phetpradap, P.: Intersections of Random Walks. PhD thesis, University of Bath (2011)

  25. Sznitman, A.S., Brownian Motion, Obstacles and Random Media Springer Monographs in Mathematics. Springer, Berlin xvi+353 pp (1998)

  26. Talagrand, M.: Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math. 81, 73–205 (1995)

    Article  MathSciNet  Google Scholar 

  27. Uchiyama, K.: The mean number of sites visited by a pinned random walk. Math. Z. 261(2), 277–295 (2009)

    Article  MathSciNet  Google Scholar 

  28. Uchiyama, K.: The first hitting time of a single point for random walks. Electron. J. Probab. 16(71), 1960–2000 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Weiss, G.H., Rubin, R.J.: Random Walks: Theory and Selected Applications Advances in Chemical Physics. Wiley, New York (1982)

    Google Scholar 

  30. van den Berg, M., Bolthausen, E., den Hollander, F.: Moderate deviations for the volume of the Wiener sausage. Ann. Math. 153(2), 355–406 (2001)

    Article  MathSciNet  Google Scholar 

  31. Vogel, Q.: A note on the intersections of two random walks in two dimensions (2020). arxiv preprint arXiv:2007.13432

Download references

Acknowledgements

The authors would like to thank the two anonymous referees whose valuable suggestions improved the paper greatly. Quirin Vogel would like to thank his supervisors Stefan Adams and Wei Wu for their support. Research of Jingjia Liu was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044-390685587, Mathematics Münster: Dynamics-Geometry-Structure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quirin Vogel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

1.1 Properties of the Rate Function

Various properties of the rate function \(I^{g_a}\) in (1.2) were established in [30]. The results are applicable to our rate function I in (2.2) due to the fact that the function I agrees with \(I^{g_a}\) up to a multiplicative constant. We only give the statement and refer the reader for the complete proof to the original paper.

Theorem 5

[30, Theorem 3, 4]

  1. 1.

    For every \(b>0\), \(I(b)=(4\pi )^{-1}\chi \left( b/(2\pi )\right) \), where \(\chi :(0,\infty )\rightarrow [0,\infty )\) and

    $$\begin{aligned} \chi (u)=\inf \Big \{{\Vert \nabla \psi \Vert }_2^2:\psi \in H^1({\mathbb {R}}^2),\, {\Vert \psi \Vert }_2=1,\, \int _{{\mathbb {R}}^2}\left( 1-\mathrm{e}^{-\psi ^2}\right) \le u\Big \}. \end{aligned}$$
    (4.1)
  2. 2.

    \(\chi \) is continuous on \((0,\infty )\) and strictly decreasing on (0, 1). Furthermore, \(\chi (u)=0\) for \(u\ge 1\).

  3. 3.

    \(u\mapsto u\chi (u)\) is strictly decreasing on (0, 1) and

    $$\begin{aligned} \lim _{u\downarrow 0}u\chi (u)=-\lambda _2, \end{aligned}$$

    where \(\lambda _2\) is the smallest Dirichlet eigenvalue of \(-\varDelta \) on a ball of unit volume.

  4. 4.

    \(u\mapsto (1-u)^{-1}\chi (u)\) is strictly decreasing in (0, 1) and

    $$\begin{aligned} \lim _{u\uparrow 1}(1-u)^{-1}\chi (u)=2\mu _2, \end{aligned}$$

    with

    $$\begin{aligned} \mu _2=\inf \{{\Vert \nabla \psi \Vert }_2^2:\psi \in H^1({\mathbb {R}}^2):{\Vert \psi \Vert }_2=1,\,{\Vert \psi \Vert }_4=1\}, \end{aligned}$$

    satisfying \(0<\mu _2<\infty \).

  5. 5.

    For all \(u\in (0,1)\), the minimization problem (4.1) has at least one minimizer. It is strictly positive, radially symmetric and strictly decreasing in the radial component. All other minimizers are of the same type.

1.2 Technical Supplement

We collect some technical results we have used in previous sections.

Lemma 3

Fix \(N>0\). There exists some \(\delta >0\) such that we have for \(a,b\in \Lambda _N\) and \(\varepsilon >0\)

$$\begin{aligned} p^{\langle N \rangle }_{\varepsilon {T_\tau }}(a,b) =\frac{1}{{T_\tau }}\mathfrak {p}^{(N)}_\varepsilon (a,b)+{{\mathcal {O}} }\left( \frac{1}{{T_\tau }^{1+\delta }}\right) . \end{aligned}$$
(4.2)

Proof

For any \(a,b\in \Lambda _N\), let us set \(m={T_\tau }^{1/4+\delta }\) for some \(\delta >0\) (on which we will put some constraints later), we decompose the probability

$$\begin{aligned} \begin{aligned} p^{\langle N \rangle }_{\varepsilon {T_\tau }}(a,b) =&\sum _{ \begin{array}{c} z\in {\mathbb {Z}}^2 \\ |z|\le m \end{array}} p_{\varepsilon {T_\tau }}\left( {a}^+,{b}^++ {z^+}N \right) + \sum _{ \begin{array}{c} z\in {\mathbb {Z}}^2 \\ |z|>m \end{array}} p_{\varepsilon {T_\tau }}\left( {a}^+,{b}^++ {z^+}N \right) \\ =&\sum _{ \begin{array}{c} z\in {\mathbb {Z}}^2 \\ |z|\le m \end{array}} P_{{a}^+}(S_{2\varepsilon {T_\tau }}=b^++z^+N) + {{\mathcal {E}} }, \end{aligned} \end{aligned}$$

with \({{\mathcal {E}} }\le P_0\left( \max _{0\le j\le \varepsilon {T_\tau }}|S_j|\ge mN{T_\tau }^{1/2}\right) \). For each summand in the first term, the transition probability of going from the point \({a}^+\) to \(b^++ {z^+}N\) on \({\mathbb {Z}}^2\) can be estimated by the local central limit theorem in (3.4)

$$\begin{aligned}&p_{\varepsilon {T_\tau }}\left( {a}^+,{b}^++{z^+}N \right) \\&\quad = \frac{1}{{T_\tau }}\mathfrak {p}_\varepsilon (a,b+Nz)\left( (1+{{\mathcal {O}} }({T_\tau }^{-1/2})\right) +A_{\varepsilon {T_\tau }}(a^+, b^++ {z^+}N), \end{aligned}$$

where \({{\mathcal {O}} }\)-term arises from the rounding issue. Note that \(A_t(x,y)<1/t^2\) uniformly in all \(t>0\). Therefore,

$$\begin{aligned} \sum _{z\in {\mathbb {Z}}^2:|z|\le m}A_{\varepsilon {T_\tau }}(a^+, b^++{z^+}N) \end{aligned}$$

is at most \({{\mathcal {O}} }({T_\tau }^{-3/2+2\delta })\).

For the second term, by the assumption that \(E\left[ |X_i|^4\right] <\infty \) we can bound by [23, Equation 2.6]

$$\begin{aligned} P_0\left( \max _{0\le j\le \varepsilon {T_\tau }}|S_j|\ge mN{T_\tau }^{1/2}\right) ={{\mathcal {O}} }\left( \frac{1}{{T_\tau }^{1+4\delta }}\right) , \end{aligned}$$

as \(n\rightarrow \infty \). Now, choosing \(\delta \) sufficiently small yields the claim. \(\square \)

Lemma 4

We have that for every \(K>0\) and \(\varepsilon >0\)

$$\begin{aligned} \sup _{n\in {\mathbb {N}}}\sup _{|x|\le K}E_{0,x^+}\left[ \exp \left( {\frac{\tau }{\varepsilon {T_\tau }}{{\mathcal {R}} }_{\varepsilon {T_\tau }}}\right) \right] :=C_K<\infty , \end{aligned}$$
(4.3)

with

$$\begin{aligned} \limsup _{K\rightarrow \infty } C_K> 0. \end{aligned}$$

Proof

The reasoning here follows [30]. The second statement is trivial, as \(C_K\ge 1\) by construction. Denote by \(E_{0,y,x}\) the measure of the random walk conditioned to be at y at time \(\varepsilon {T_\tau }/2\) and at x at time \(\varepsilon {T_\tau }\). We then have

$$\begin{aligned} \begin{aligned}&E_{0,x^+}\left[ \exp \left( {\frac{\tau }{\varepsilon {T_\tau }}{{\mathcal {R}} }_{\varepsilon {T_\tau }}}\right) \right] \\&\quad = \sum _{y\in {\mathbb {Z}}^d}\frac{p_{\varepsilon {T_\tau }/2}(0,y)p_{\varepsilon {T_\tau }/2}(y,x^+) }{p_{\varepsilon {T_\tau }}(0,x^+)} E_{0,y,x^+}\left[ \exp \left( {\frac{\tau }{\varepsilon {T_\tau }}{{\mathcal {R}} }_{\varepsilon {T_\tau }}}\right) \right] \\&\quad \le \sum _{y\in {\mathbb {Z}}^d}\frac{p_{\varepsilon {T_\tau }/2}(0,y)p_{\varepsilon {T_\tau }/2}(y,x^+) }{p_{\varepsilon {T_\tau }}(0,x^+)} E_0\left[ \mathrm{e}^{{\frac{\tau }{\varepsilon {T_\tau }}{{\mathcal {R}} }_{\varepsilon {T_\tau }/2}}}\Big | S_{\varepsilon {T_\tau }/2}=y\right] \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \times E_{0}\left[ \mathrm{e}^{{\frac{\tau }{\varepsilon {T_\tau }}{{\mathcal {R}} }_{\varepsilon {T_\tau }/2}}}\Big | S_{\varepsilon {T_\tau }/2}=y-x^+\right] , \end{aligned} \end{aligned}$$

where in the last step we used the subadditivity of \({{\mathcal {R}} }_n\). Then, apply Cauchy–Schwarz inequality and Jensen’s inequality to get

$$\begin{aligned} \le&\frac{1}{p_{\varepsilon {T_\tau }}(0,x^+)}\sum _{y\in {\mathbb {Z}}^d}\left( p_{\varepsilon {T_\tau }/2}(0,y)E_0\left[ \exp \left( {\frac{\tau }{\varepsilon {T_\tau }}{{\mathcal {R}} }_{\varepsilon {T_\tau }/2}}\right) \Big | S_{\varepsilon {T_\tau }/2}=y\right] \right) ^2 \\ \le&\frac{1}{ p_{\varepsilon {T_\tau }}(0,x^+)}\sum _{y\in {\mathbb {Z}}^d} p_{\varepsilon {T_\tau }/2}(0,y)^2E_0\left[ \exp \left( {\frac{2\tau }{\varepsilon {T_\tau }}{{\mathcal {R}} }_{\varepsilon {T_\tau }/2}}\right) \Big | S_{\varepsilon {T_\tau }/2}=y\right] . \end{aligned}$$

Employing [23, Proposition 2.4.6], we can bound \(p_t(x,y)\le c/t\) for some \(c>0\) neither depending on \(t\in {\mathbb {N}}\) nor \(x,y \in {\mathbb {Z}}^2\). Applying (3.28) and (in the second step) the Markov property, we conclude that the quantity above is bounded from above by

$$\begin{aligned} \begin{aligned} \le&\frac{2c }{\varepsilon {T_\tau }p_{\varepsilon {T_\tau }}(0,x^+)}\sum _{y\in {\mathbb {Z}}^d} p_{\varepsilon {T_\tau }/2}(0,y)E_0\left[ \exp \left( {\frac{2\tau }{\varepsilon {T_\tau }}{{\mathcal {R}} }_{\varepsilon {T_\tau }/2}}\right) \Big | S_{\varepsilon {T_\tau }/2}=y\right] \\ \le&\, \frac{2c }{\varepsilon {T_\tau }p_{\varepsilon {T_\tau }}(0,x^+)}E_0\left[ \exp \left( {\frac{2\tau }{\varepsilon {T_\tau }}{{\mathcal {R}} }_{\varepsilon {T_\tau }/2}}\right) \right] \\ \le&\, 2c \mathrm{e}^{K^2/(2\varepsilon )}E_0\left[ \exp \left( {\frac{2\tau }{\varepsilon {T_\tau }}{{\mathcal {R}} }_{\varepsilon {T_\tau }/2}}\right) \right] . \end{aligned} \end{aligned}$$

This finishes the proof. \(\square \)

Notation Glossary

In this section, we list most of the notation used throughout the paper.

1.1 Spaces and Projections

We will always work with the Skorokhod space D of cadlag paths from \([0,\infty )\) onto \({\mathbb {R}}^2\). The family of coordinate projections on \({\mathbb {R}}^2\) is denoted by \((S_t)_{t\ge 0}\). Given a space E, denote the space of probability measures of E by \({{\mathcal {M}} }_1(E)\).

1.2 Domains and Scalings

In general, throughout the paper, N is a cut-off constant, compactifying \({\mathbb {R}}^2\) to the torus. Furthermore, n is the inverse lattice spacing.

  1. 1.

    \(x^+=\left\lfloor x{T_\tau ^{1/2}} \right\rfloor \) and \(x^-=\left\lfloor x{T_\tau ^{1/2}} \right\rfloor {T_\tau }^{-1/2}\) for \(x\in {\mathbb {R}}^2\).

  2. 2.

    \(\tau =\log n\), the scaling of the LDP.

  3. 3.

    \({T_\tau }=n/\log n\), the mean scaling.

  4. 4.

    \(Q_\tau =\sqrt{\log {T_\tau }\log \log {T_\tau }}^{-1}\), the size of the holes during the cutting procedure.

  5. 5.

    \(\Lambda _N=[-N/2,N/2)^2\), the continuum torus of length N.

  6. 6.

    \(\varDelta _\tau =\Lambda _N\cap {T_\tau }^{-1/2}{\mathbb {Z}}^2\), the rescaled lattice.

  7. 7.

    \(B_{R}=\{x\in {\mathbb {R}}^2:|x|\le r\}\), the ball centered at zero, also \(B_R(x):=x+B_R\).

1.3 Kernels and Measures

The superscripts (N) and \(\langle N\rangle \) imply that the underlying process lives on the torus. The use of mathfrak and mathbb indicates continuum objects. We occasionally use the shorthand notation \(p(y-x)=p(x,y)\), if a kernel p is translation invariant. Similarly, if the sub/superscript is equal to zero, occasionally we omit it, i.e., \(P=P_0\).

  1. 1.

    \(P_x\) the measure of the planar random walk defined on \({\mathbb {Z}}^2\) started at x, and \(p_t(x,y)\) the transition kernel from point x to point y at time t associated with \(P_x\).

  2. 2.

    \(P^{\langle N \rangle }_x\) the measure of the planar random walk projected into \(\varDelta ^\tau _N\), and \(p^{\langle N\rangle }_t(x,y)\) the transition kernel associated with \(P^{\langle N \rangle }_x\).

  3. 3.

    \({\mathbb {P}}_x\) the measure of Brownian motion defined on \({\mathbb {R}}^2\), and \(\mathfrak {p}_t(x,y)\) the Brownian transition kernel associated with \({\mathbb {P}}_x\).

  4. 4.

    \({\mathbb {P}}_x^{(N)}\) the measure of Brownian motion projected onto \(\Lambda _N\), and \(\mathfrak {p}^{(N)}_t(x,y)\) the transition kernel associated with \({\mathbb {P}}_x^{(N)}\) .

  5. 5.

    \({\mathbb {P}}_{a,b}\), \({\mathbb {P}}_{a,b}^{(N)}\), \(P_{a,b}\), \(P_{a,b}^{\langle N\rangle }\) the bridge measures (on the whole space and on the torus) of length \(\varepsilon \) for the Brownian motion, and length \(\varepsilon {T_\tau }\) for the random walks. The expectation is denoted in the same style.

  6. 6.

    Define \({\mathcal {S}}_{n,\varepsilon }=\{S_{i\varepsilon {T_\tau }}\}_{1\le i\le \tau /\varepsilon }\) the skeleton walk, then denote \(P^{\langle N \rangle }_{n,\varepsilon },E^{\langle N \rangle }_{n,\varepsilon }\) the conditional law/expectation given \({\mathcal {S}}_{n,\varepsilon }\) (where \(S_t\) is distributed under \(P^{\langle N \rangle }_0\)).

  7. 7.

    \(b_{n,\varepsilon }(y,z)=P^{\langle N \rangle }_{y^-}\left( \sigma \le \varepsilon {T_\tau }\mid S_{\varepsilon {T_\tau }}=z^-\right) \), and \(b_{n,\varepsilon }^{\rho }(y,z)=b_{n,\varepsilon }(y,z)\mathbb {1}\{y,z\notin B_{\rho }\}\) for \(y,z\in {\mathbb {R}}^2\) with \(\rho >0\) the radius of the centered ball.

  8. 8.

    \(\phi _\varepsilon (y,z)=\left[ {\mathfrak {p}_{\varepsilon /2}^{(N)}(z-y)}\right] ^{-1}{\int _0^\varepsilon \mathrm{d}s \mathfrak {p}_{s/2}^{(N)}(-y)\mathfrak {p}_{(\varepsilon -s)/2}^{(N)}(z)}\) with \(\phi _\varepsilon ^\rho (y,z)=\phi _\varepsilon (y,z)\mathbb {1}\{y,z\notin B_{\rho }\}\).

1.4 Stopping Times

  1. 1.

    \(\sigma =\min \{n\ge 0 :S_n=0\}\) and \(\sigma _r=\min \{n\ge 0:S_n\in \partial B_{N/r}\}\).

  2. 2.

    \(H_z=\min \{n\ge 0:S_n=z\}\), for a \(z\in {\mathbb {Z}}^2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Vogel, Q. Large Deviations of the Range of the Planar Random Walk on the Scale of the Mean. J Theor Probab 34, 2315–2345 (2021). https://doi.org/10.1007/s10959-020-01039-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-020-01039-4

Keywords

Mathematics Subject Classification (2010)

Navigation