Skip to main content

Advertisement

Log in

MODIS Aerosol Optical Depth Inversion Over Urban Areas Supported by BRDF/Albedo Products

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Aerosols play an important role in climate change and environmental pollution, and monitoring of aerosols via remote sensing is of great significance. However, for urban areas that are closely related to people's lives, remote sensing monitoring of aerosol optical depth (AOD) faces major challenges. These surface types, with bidirectional reflection characteristics, have a high surface reflectivity that is not sensitive to aerosol changes. Therefore, surface reflectivity must be calculated with high precision, which can be difficult using existing methods. To overcome these problems, this paper provides a MODIS AOD inversion method for complex background conditions that is supported by BRDF/Albedo products. Using these products, the accuracy of surface reflectivity and the resulting inversion results of aerosols are improved. Three typical complex background areas (Beijing, Baltimore and Paris) were selected for application testing. AOD inversion was calculated using MODIS BRDF/Albedo data for 6 years from 2012 to 2017. Accuracy was verified using the AERONET ground-based observations in the corresponding areas, and results were compared with the existing MODIS aerosol product (MOD04 AOD). Inversion estimates using this method have a higher correlation with AERONET AOD (R = 0.948). The root mean square error is 0.107, and 70.08% of the points are less than the expected error. When compared with MOD04 AOD products in urban areas, the inversion results of the new algorithm have higher precision and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ångström, A. (1964). The parameters of atmospheric turbidity. Tellus, 16(1), 64–75. https://doi.org/10.3402/tellusa.v16i1.8885.

    Article  Google Scholar 

  • Dubovik, O., & King, M. D. (2000). A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. Journal of Geophysical Research: Atmospheres, 105(D16), 20673–20696. https://doi.org/10.1029/2000JD900282.

    Article  Google Scholar 

  • Feng, L., Ye, B., Feng, H., Ren, F., Huang, S., Zhang, X., et al. (2017). Spatiotemporal changes in fine particulate matter pollution and the associated mortality burden in China between 2015 and 2016. International Journal of Environmental Research & Public Health, 14(11), 1321. https://doi.org/10.3390/ijerph14111321.

    Article  Google Scholar 

  • Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., et al. (2007). The physical science basis: Changes in atmospheric constituents and in radiative forcing. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate change (pp. 130–216). Cambridge: Cambridge University Press.

    Google Scholar 

  • Franch, B., Vermote, E. F., Sobrino, J. A., & Fédèle, E. (2013). Analysis of directional effects on atmospheric correction. Remote Sensing of Environment, 128(1), 276–288. https://doi.org/10.1016/j.rse.2012.10.018.

    Article  Google Scholar 

  • Holben, B., Vermote, E., Kaufman, Y. J., Tanre, D., & Kalb, V. (1992). Aerosol retrieval over land from AVHRR data-application for atmospheric correction. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 212–222. https://doi.org/10.1109/36.134072.

    Article  Google Scholar 

  • Holben, B. N., Eck, T. F., Slutsker, I., Tanri, D., Buis, J. P., Setzer, A., et al. (1998). AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66(1), 1–16. https://doi.org/10.1016/s0034-4257(98)00031-5.

    Article  Google Scholar 

  • Hsu, N. C., Jeong, M. J., Bettenhausen, C., Sayer, A. M., Hansell, R., Seftor, C. S., et al. (2013). Enhanced deep blue aerosol retrieval algorithm: The second generation. Journal of Geophysical Research-Atmospheres, 118(16), 9296–9315. https://doi.org/10.1002/jgrd.50712.

    Article  Google Scholar 

  • Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2004). Aerosol properties over bright-reflecting source regions. IEEE Transactions on Geoscience & Remote Sensing, 42(3), 557–569. https://doi.org/10.1109/tgrs.2004.824067.

    Article  Google Scholar 

  • Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2006). Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Transactions on Geoscience & Remote Sensing, 44(11), 3180–3195. https://doi.org/10.1109/TGRS.879540.

    Article  Google Scholar 

  • Huang, D., Xu, J., & Zhang, S. (2012). Valuing the health risks of particulate air pollution in the Pearl River Delta, China. Environmental Science & Policy, 15(1), 38–47. https://doi.org/10.1016/j.envsci.2011.09.007.

    Article  Google Scholar 

  • Kaufman, Y. J., & Sendra, C. (1988). Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. International Journal of Remote Sensing, 9(8), 1357–1381. https://doi.org/10.1080/01431168808954942.

    Article  Google Scholar 

  • Kaufman, Y. J., Tanri, D., Remer, L. A., Vermote, E. F., Chu, A., & Holben, B. N. (1997a). Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. Journal of Geophysical Research Atmospheres, 102(D14), 51–17051. https://doi.org/10.1029/96JD03988.

    Article  Google Scholar 

  • Kaufman, Y. J., Wald, A. E., Remer, L. A., & Gao, B. C. (1997b). The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Transactions on Geoscience and Remote Sensing, 35(5), 1286–1298.

    Article  Google Scholar 

  • King, M. D., Kaufman, Y. J., Menzel, W. P., & Tanre, D. (1992). Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Transactions on Geoscience and Remote Sensing, 30(1), 2–27. https://doi.org/10.1109/36.124212.

    Article  Google Scholar 

  • Kotchenova, S. Y., Vermote, E. F., Matarrese, R., & Frank, J. K. (2006). Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Applied Optics, 45(26), 6762–6774. https://doi.org/10.1364/AO.45.006762.

    Article  Google Scholar 

  • Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., et al. (2013). The collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques., 6, 2989–3034. https://doi.org/10.5194/amt-6-2989-2013.

    Article  Google Scholar 

  • Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., & Kaufman, Y. J. (2007). Second generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2006JD007811.

    Article  Google Scholar 

  • Li, Z., Zhao, X., Kahn, R., Mishchenko, M., Remer, L., Lee, K. H., et al. (2009). Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective. Annales Geophysicae, 27(7), 2755–2770. https://doi.org/10.5194/angeo-27-2755-2009.

    Article  Google Scholar 

  • Li, Z. Q., Niu, F., Lee, K. H., & Xin, J. Y. (2007). Validation and understanding of Moderate resolution imaging spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China. Journal of Geophysical Research: Atmospheres, 112(D22), 365–371. https://doi.org/10.1029/2007jd008479.

    Article  Google Scholar 

  • Munchak, L. A., Levy, R. C., Mattoo, S., Remer, L. A., Holben, B. N., Schafer, J. S., et al. (2013). MODIS 3 km aerosol product: Applications over land in an urban/suburban region. Atmospheric Measurement Techniques, 6(7), 1747–1759. https://doi.org/10.5194/amt-6-1747-25.

    Article  Google Scholar 

  • Roujean, J. L., Leroy, M., & Deschamps, P. Y. (1992). A Bidirectional reflectance model of the earth's surface for the correction of remote-sensing data. Journal of Geophysical Research-Atmospheres, 97(D18), 20455–20468. https://doi.org/10.1029/92JD01411.

    Article  Google Scholar 

  • Salomonson, V. V., Barnes, W. L., Maymon, P. W., & Montgomery, H. E. (1989). MODIS: Advanced facility instrument for studies of the Earth as a system. IEEE Transactions on Geoscience and Remote Sensing, 27(2), 145–153. https://doi.org/10.1109/36.20292.

    Article  Google Scholar 

  • Strahler, A. H., Lucht, W., Schaaf, C. B., Tsang, T., Gao, F., Li, X., et al. (1999). MODIS BRDF/albedo product: Algorithm theoretical basis document version 5.0.MODIS Document.

  • Sun, L., Li, R. B., Tian, X. P., & Wei, J. (2017). Analysis of the temporal and spatial variation of aerosols in the Beijing-Tianjin-Hebei region with a 1 km AOD product. Aerosol and Air Quality Research, 17, 923–935. https://doi.org/10.4209/aaqr.2016.05.0185.

    Article  Google Scholar 

  • Tian, X., Liu, Q., Song, Z., et al. (2018). Aerosol optical depth retrieval from Landsat 8 OLI images over urban areas supported by MODIS BRDF/Albedo Data. IEEE Geoscience and Remote Sensing Letters, 15(7), 976–980. https://doi.org/10.1109/LGRS.2018.2827200.

    Article  Google Scholar 

  • Vermote, E. F., Tanre, D., Deuze, J. L., Herman, M., & Morcette, J. J. (1997). Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Transactions on Geoscience & Remote Sensing, 35(3), 675–686. https://doi.org/10.1109/36.581987.

    Article  Google Scholar 

  • Wei, J., Sun, L., & Liu, S. (2015). Response analysis of particulate air pollution to land-use and land-cover change. Acta Ecologica Sinic, 35(16), 5495–5506. https://doi.org/10.5846/stxb201404240816.

    Article  Google Scholar 

Download references

Acknowledgements

The MODIS radiometric calibration products, albedo products and aerosol products in this paper were provided by the NASA; we are very grateful. We would also like to thank AERONET for ground-based observations of atmospheric aerosols.

Funding

This research was funded by the National Natural Science Foundation of China, Grant No. 41771408; Shandong Natural Science Foundation, Grant No. ZR2019MD022; Shandong Natural Science Foundation, Grant No. ZR2017MD001.

Author information

Authors and Affiliations

Authors

Contributions

Lin Sun was involved in conceptualization and formal analysis; Wenhua Zhang contributed to methodology, software and writing-original draft preparation; Wenhua Zhang, Lishu Lian and Yikun Yang were involved in validation; Lin Sun and Lishu Lian were involved in writing-review and editing and funding acquisition.

Corresponding author

Correspondence to Lin Sun.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Sun, L., Lian, L. et al. MODIS Aerosol Optical Depth Inversion Over Urban Areas Supported by BRDF/Albedo Products. J Indian Soc Remote Sens 48, 1345–1354 (2020). https://doi.org/10.1007/s12524-020-01129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-020-01129-0

Keywords

Navigation