Skip to main content
Log in

Biodegradation of Polycaprolactone (PCL) with Different Molecular Weights by Candida antarctica Lipase

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Biodegradation characteristics of polycaprolactone (PCL) films with three different molecular weights after being degraded by Candida antarctica lipase were investigated. The changes of the PCL films before and after degradation were characterized. The results showed that the degradation process of PCL films could be roughly divided into two phrases: a rapid degradation phase and a slow degradation phase. Molecular weights of PCL films had no influence on the performance of lipase; however, increasing molecular weight caused the numbers of pores on the degraded PCL films to increase, and the pores became deeper as the degradation time increased. The results also showed that the crystallinity of the films decreased with increasing degradation time, and both the crystalline and the amorphous regions of the films were simultaneously degraded. The thermal stability of the films also gradually decreased with the increase of degradation time. Despite the above changes, the degradation did not cause the chemical composition and structure of PCL to change, and PCL remained the main component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aris MH, Annuar MSM, Ling TC (2016) Polym Degrad Stab 133:182–191

    Article  CAS  Google Scholar 

  2. Castilla-Cortázar I, Más-Estellésa J, Ivirico JLE, Marí B, Vidaurre A (2012) Polym Degrad Stab 97:1241–1248

    Article  CAS  Google Scholar 

  3. Gan Z, Liang Q, Zhang J, Jing X (1997) Polym Degrad Stab 56:209–213

    Article  CAS  Google Scholar 

  4. Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2003) Polym Degrad Stab 79:385–397

    Article  CAS  Google Scholar 

  5. Karal O, Hamurcu EE, Baysal BM (1997) Polymer 38:6071–6078

    Article  CAS  Google Scholar 

  6. Khan I, Dutta JR, Ganesan R (2016) Int J Biol Macromol 95:126–131

    Article  CAS  Google Scholar 

  7. Khatiwala VK, Shekhar N, Aggarwal S, Mandal UK (2008) J Polym Environ 16:61–67

    Article  CAS  Google Scholar 

  8. McCoy BJ (2001) Chem Eng Sci 56:1525–1529

    Article  CAS  Google Scholar 

  9. Mohamed RM, Yusoh K (2016) Adv Mater Res 1134:249–255

    Article  Google Scholar 

  10. Pellis A, Haernvall K, Pichler CM, Ghazaryan G, Breinbauer R, Guebitz GM (2016) J Biotechnol 47:235–241

    Google Scholar 

  11. Saşmazel HT, Gümüşderelioğlu M, Gürpinar A, Onur MA (2008) Biomed Mater Eng 18:119–128

    PubMed  Google Scholar 

  12. Sekosan G, Vasanthan N (2010) J Polym Sci B 48:202–211

    Article  CAS  Google Scholar 

  13. Shi K, Su T, Wang Z (2019) Polym Degrad Stab 164:55–60

    Article  CAS  Google Scholar 

  14. Shi K, Jing J, Song L, Su T, Wang Z (2020) Int J Biol Macromol 144:183–189

    Article  CAS  Google Scholar 

  15. Sivalingam G, Vijayalakshmi SP, Madras G (2004) Ind Eng Chem Res 43:7702–7709

    Article  CAS  Google Scholar 

  16. Tokiwa Y, Suzuki T, Takeda K (1988) Agric Biol Chem 52:1937–1943

    CAS  Google Scholar 

  17. Weinberger S, Haernvall K, Scaini D, Ghazaryan G, Zumstein MT, Sander M (2017) Green Chem 19:5381–5384

    Article  CAS  Google Scholar 

  18. Weinberger S, Canadell J, Quartinello F, Yeniad B, Arias A, Pellis A, Guebitz GM (2017) Catalysts 7:318

    Article  CAS  Google Scholar 

  19. Woodruff MA, Hutmacher DW (2010) Prog Polym Sci 35:1217–1256

    Article  CAS  Google Scholar 

  20. Wu D, Yuan L, Laredo E, Zhang M, Zhou W (2012) Ind Eng Chem Res 51:2290–2298

    Article  CAS  Google Scholar 

  21. Xie W, Gan Z (2009) Polym Degrad Stab 94:1040–1046

    Article  CAS  Google Scholar 

  22. Yin G, Zhang L, Zheng Z, Li QJ (2016) Polym Res 23:229

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31570097), the LiaoNing Revitalization Talents Program (Grant No. XLYC1807034), the Program for Liaoning Innovative Talents in University (Grant No. LR2017063) and the Natural Science Foundation of Liaoning Province (Grant No. 20180550589).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingting Su or Zhanyong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Shi, K., Su, T. et al. Biodegradation of Polycaprolactone (PCL) with Different Molecular Weights by Candida antarctica Lipase. J Polym Environ 28, 2947–2955 (2020). https://doi.org/10.1007/s10924-020-01826-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01826-4

Keywords

Navigation