Skip to main content

Advertisement

Log in

Simple and effective strategy to synthesize porous carbon with controlled structures for supercapacitor

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

With remarkable electrochemical stability/conductivity and abundant porous structure, porous carbon electrodes can store considerable amount of charge electrostatically by reversible adsorption of electrolyte, thereby showing high capacity and cycle stability for supercapacitor. However, there was lack of simple and effective ways to synthesize porous carbon materials with controllable structures. Herein, porous carbon materials with controlled structures (copper coin, 3D framework with closed-packing order, and hollow sphere) have been synthesized by an extension of Stöber method using phenolic resin as carbon sources. SiO2 nanoparticles (120 nm) were used as the macroporous templates and Pluronic F127/tetraethyl orthosilicate (TEOS) as mesoporous templates. Adjusting the amount of TEOS helped to explore the synthesis mechanism. As-synthesized porous carbon materials exhibit high surface area of 316–482 m2 g−1 and large pore volumes of 0.306–0.748 cm3 g−1. The materials thereby obtained when used as electrodes in capacitors demonstrate specific capacitance (up to 83 F g−1 at 5 mV s−1) and good robustness after 2000 cycles, which contributed by their abundant porous structure, large surface area/pore volume, morphology, and electrochemical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alaş MÖ, Güngör A, Genç R, Erdem E (2019) Feeling the power: robust supercapacitors from nanostructured conductive polymers fostered with Mn2+ and carbon dots. Nanoscale 11:12804–12816

    Google Scholar 

  • Chang TH, Young C, Lee MH, Salunkhe RR, Alshehri SM, Ahamad T, Islam MT, Wu KCW, Hossain MSA, Yamauchi Y, Ho KC (2017) Synthesis of MOF-525 derived nanoporous carbons with different particle sizes for supercapacitor application. Chem Asian J 12:2857–2862

    CAS  Google Scholar 

  • Chang TW, Lin LY, Peng PW, Zhang YX, Hang YY (2018) Enhanced electrocapacitive performance for the supercapacitor with tube-like polyaniline and graphene oxide composites. Electrochim Acta 259:348–354

    CAS  Google Scholar 

  • Dutta S, Kim J, Ide Y, Kim JH, Hossain MSA, Bando Y, Yamauchi Y, Wu KCW (2017) 3D network of cellulose-based energy storage devices and related emerging applications. Mater Horiz 4:522–545

    CAS  Google Scholar 

  • Fenker M, Julin J, Petrikowski K, Richter A (2019) Physical and electrical properties of nitrogen-doped hydrogenated amorphous carbon films. Vacuum 162:8–14

    CAS  Google Scholar 

  • Fu Y, Liu F, Wang H (2020) Spindle Mn2O3/carbon hybrid with homogeneous structure as advanced electrodes for supercapacitors. J Nanopart Res 22:32

    CAS  Google Scholar 

  • Girija TC, Sangaranarayanan MV (2006) Analysis of polyaniline-based nickel electrodes for electrochemical supercapacitors. J Power Sources 156:705–711

    CAS  Google Scholar 

  • Han Y, Dong X, Zhang C, Liu S (2012) Hierarchical porous carbon hollow-spheres as a high performance electrical double-layer capacitor material. J Power Sources 211:92–96

    CAS  Google Scholar 

  • Hao Z, Yang S, Niu J, Fang Z, Liu L, Dong Q, Song S, Zhao Y (2018) Bimetallic oxide Fe1.89Mo4.11O7 electrocatalyst with highly efficient hydrogen evolution reaction activity in alkaline and acidic media. Chem Sci 9:5640–5645

    CAS  Google Scholar 

  • Heimbӧckel R, Kraas S, Hoffmann F, Frӧba M (2018) Increase of porosity by combining semi-carbonization and KOH activation of formaldehyde resins to prepare high surface area carbons for supercapacitor applications. Appl Surf Sci 427:1055–1064

    Google Scholar 

  • Huang WK, Chung KJ, Liu YM, Ger MD, Pu NW, Youh MJ (2015) Carbon nanomaterials synthesized using a spray pyrolysis method. Vacuum 118:94–99

    CAS  Google Scholar 

  • Ismar E, Karazrhir T, Ates M, Sarac AS (2017) Electrospun carbon nanofiber web electrode: Supercapacitor behavior in various electrolytes. J Appl Polym Sci 135:45723

    Google Scholar 

  • Jiao Z, Wu Q, Qiu J (2018) Preparation and electrochemical performance of hollow activated carbon fiber-carbon nanotubes three-dimensional self-supported electrode for supercapacitor. Mater Design 154:239–245

    CAS  Google Scholar 

  • Kaneti YV, Dutta S, Hossain MSA, Shiddiky MJA, Tung KL, Shieh FK, Tsung CK, Wu KCW, Yamauchi Y (2017) Strategies for improving the functionality of zeolitic imidazolate frameworks: tailoring nanoarchitectures for functional applications. Adv Mater 29:1700213

    Google Scholar 

  • Kasap S, Kaya II, Repp S, Erdem E (2019) Superbat: battery-like supercapacitor utilized by graphene foam and zinc oxide (ZnO) electrodes induced by structural defects. Nanoscale Adv 1:2586–2597

    CAS  Google Scholar 

  • Kasuya A, Sasaki Y, Saito Y, Tohji K, Nishina Y (1997) Evidence for size-dependent discrete dispersions in single-wall nanotubes. Phys Rev Lett 78:4434–4437

    CAS  Google Scholar 

  • Li Y, Ding J, Chen J, Xu C, Wei B, Liang J, Wu D (2002) Preparation of ceria nanoparticles supported on carbon nanotubes. Mater Res Bull 37:313–318

    CAS  Google Scholar 

  • Li B, Dai F, Xiao QF, Yang L, Sheng JM, Zhang CM, Cai M (2016a) Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ Sci 9:102–106

    CAS  Google Scholar 

  • Li L, Wang X, Wang S, Cao Z, Wu Z, Wang H, Gao Y, Liu J (2016b) Activated carbon prepared from lignite as supercapacitor electrode materials. Electroanalysis 28:243–248

    CAS  Google Scholar 

  • Li Y, Kim J, Wang J, Liu NL, Bando Y, Alshehri AA, Yamauchi Y, Hou CH, Wu KCW (2018) High performance capacitive deionization using modified ZIF-8-derived, N-doped porous carbon with improved conductivity. Nanoscale 10:14852–14859

    CAS  Google Scholar 

  • Liu WF, Yang YZ, Liu XG, Xu BS (2016) Preparation and electrochemical performance of a polyaniline-carbon microsphere hybrid as a supercapacitor electrode. New Carbon Mater 31:594–599

    CAS  Google Scholar 

  • Liu M, Qin Z, Yang X, Lin Z, Guo T (2019) Fabricating controllable hierarchical pores on smooth carbon sheet for synthesis of supercapacitor materials. Vacuum 168:108806

    CAS  Google Scholar 

  • Meng Y, Gu D, Zhang F, Shi Y, Yang H, Li Z, Yu C, Tu B, Zhao DY (2005) Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew Chem Int Ed 117:7215–7221

    Google Scholar 

  • Najib S, Erdem E (2019) Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv 1:2817–2827

    Google Scholar 

  • Qian X, Lv Y, Li W, Xia Y, Zhao D (2011) Multiwall carbon nanotube@mesoporous carbon with core-shell configuration: a well-designed composite-structure toward electrochemical capacitor application. J Mater Chem 21:13025–13031

    CAS  Google Scholar 

  • Ryoo R, Joo SH, Jun S (1999) Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B 103:7743–7746

    CAS  Google Scholar 

  • Salunkhe RR, Hsu SH, Wu KCW, Yamauchi Y (2014) Large-scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications. ChemSusChem 7:1551–1556

    CAS  Google Scholar 

  • Salunkhe RR, Young C, Tang J, Takei T, Ide Y, Kobayashi N, Yamauchi Y (2016) A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chem Commun 52:4764–4767

    CAS  Google Scholar 

  • Schwan J, Ulrich S, Batori V, Ehrhardt H (1996) Raman spectroscopy on amorphous carbon films. J Appl Phys 80:440–447

    CAS  Google Scholar 

  • Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. Colloid Interface Sci 26:62–69

    Google Scholar 

  • Sumboja A, Liu J, Zheng WG, Zong Y, Zhang H, Liu Z (2018) Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem Soc Rev 47:5919–5945

    CAS  Google Scholar 

  • Sun X, Li S, Liu R, Sun X, Liu X, Li A, Li W (2020) A three-dimensional heterogeneous ZnCo-PBA@α-Co(OH)2 nanostructure for high-performance supercapacitors. J Nanopart Res 22:37

    CAS  Google Scholar 

  • Thomsen C, Reich S (2000) Double resonant Raman scattering in graphite. Phys Rev Lett 85:5214–5217

    CAS  Google Scholar 

  • Tuncer M, Bakan F, Gocmez H, Erdem E (2019) Capacitive behaviour of nanocrystalline octacalcium phosphate (OCP) (Ca8H2(PO4)6·5H2O) as an electrode material for supercapacitors: Biosupercap. Nanoscale 11:18375–18381

    CAS  Google Scholar 

  • Veeramani V, Sivakumar M, Chen SM, Madhu R, Alamri HR, Alothman ZA, Hossain MSA, Chen CK, Yamauchi Y, Miyamoto N, Wu KCW (2017) Lignocellulosic biomass-derived, graphene sheetlike porous activated carbon for electrochemical supercapacitor and catechin sensing. RSC Adv 7:45668–45675

    CAS  Google Scholar 

  • Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107

    CAS  Google Scholar 

  • Wang Z, Liu X, Lv M, Meng J (2010) Simple synthesis of magnetic mesoporous FeNi/carbon composites with a large capacity for the immobilization of biomolecules. Carbon 48:3182–3189

    CAS  Google Scholar 

  • Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    CAS  Google Scholar 

  • Wang J, Xu Y, Ding B, Chang Z, Zhang X, Yamauchi Y, Wu KCW (2018) Confined self-assembly in two-dimensional interlayer space: monolayered mesoporous carbon nanosheets with in-plane orderly arranged mesopores and high graphitized framework. Angew Chem Int Ed 57:2894–2898

    CAS  Google Scholar 

  • Xu B, Wu F, Chen R, Cao G, Chen S, Zhou Z, Yang Y (2008) Highly mesoporous and high surface area carbon: a high capacitance electrode material for EDLCs with various electrolytes. Electrochem Commun 10:795–797

    CAS  Google Scholar 

  • Xu J, Zheng F, Xi C, Yu Y, Chen L, Yang W, Hu P, Zhen Q, Bashir S (2018) Facile preparation of hierarchical vanadium pentoxide (V2O5)/titanium dioxide (TiO2) heterojunction composite nano-arrays for high performance supercapacitor. J Power Sources 404:47–55

    CAS  Google Scholar 

  • You B, Yang J, Sun Y, Su Q (2011) Easy synthesis of hollow core, bimodal mesoporous shell carbon nanospheres and their application in supercapacitor. Chem Commun 47:12364–12366

    CAS  Google Scholar 

  • Zhai Y, Dou Y, Liu X, Park SS, Ha CS, Zhao D (2011) Soft-template synthesis of ordered mesoporous carbon/nanoparticle nickel composites with a high surface area. Carbon 49:545–555

    CAS  Google Scholar 

  • Zhang S, Chen L, Zhou S, Zhao D, Wu L (2010) Facile synthesis of hierarchically ordered porous carbon via in situ self-assembly of colloidal polymer and silica spheres and its use as a catalyst support. Chem Mater 22:3433–3440

    CAS  Google Scholar 

  • Zhou J, Guo M, Wang L, Ding Y, Zhang Z, Tang Y, Liu C, Luo S (2019) 1T-MoS2 nanosheets confined among TiO2 nanotube arrays for high performance supercapacitor. Chem Eng J 366:163–171

    CAS  Google Scholar 

  • Zou Y, Wang Y, Fang Z, Wu D, Yang S, Hao Z, Lang J, Dong Q (2018) Sulfur powder as a reducing agent to synthesize the Ni@Ni(OH)2 flower-like material for electrochemical capacitors. J Nanosci Nanotechnol 18:7732–7738

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21571045), Natural Science Foundation of Heilongjiang Province of China (JJ2020TD0027), Natural Science Foundation of Guizhou Province of China (QKH-J 2020 1Y032), and Ph.D. Start-up Foundation of Zunyi Medical University (Grant F-883) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiming Lin or Fengyu Qu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Niu, H., Lin, H. et al. Simple and effective strategy to synthesize porous carbon with controlled structures for supercapacitor. J Nanopart Res 22, 283 (2020). https://doi.org/10.1007/s11051-020-05011-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-05011-5

Keywords

Navigation