Skip to main content
Log in

Kinetics of Cr2N Precipitation and Its Effect on Pitting Corrosion of Nickel-Free High-Nitrogen Austenitic Stainless Steel

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, hot-rolled nickel-free high-nitrogen austenitic stainless steels (HNSS) were solution annealed and aged at 700, 800 and 900 °C for 14 h. Precipitation behavior of Cr2N at the grain boundaries (GB) of HNSS was studied using TC-PRISMA simulation and TEM analysis. Pitting corrosion behavior of HNSS at solution annealed and aged conditions were studied using cyclic polarization and electrochemical impedance spectroscopy (EIS) analysis. TC-PRISMA simulation results showed that equal volume fraction of chromium nitride (Cr2N) precipitates was observed in GBs of austenite in all three aging conditions. However, large size precipitates were observed in samples aged at 900 °C compared to samples aged at 700 and 800 °C. TEM investigations showed the presence of discrete needle like Cr2N precipitates at the GBs and coarse lamellar austenite in regions adjoining the GBs in samples aged at 700 °C aging temperature. Disk-type Cr2N precipitates were observed in GBs of austenite in 900 °C aging temperature. Besides, sample aged at 900 °C exhibited relatively higher repassivation behavior compared to solution annealed and samples aged at 700 and 800 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Pettersson, K. Frisk, and R. Fluch, Experimental and Computational Study of Nitride Precipitation in a CrMnN Austenitic Stainless Steel, Mater. Sci. Eng. A, 2017, 684, p 435–441

    Article  CAS  Google Scholar 

  2. J. Bakajová, M. Dománková, R. Čička, S. Eglsäer, and J. Janovec, Influence of Annealing Conditions on Microstructure and Phase Occurrence in High-Alloy CrMnN Steels, Mater. Charact., 2010, 61, p 969–974

    Article  Google Scholar 

  3. J. Johnson, B.K. Reck, T. Wang, and T.E. Graedel, The Energy Benefit of Stainless Steel Recycling, Energy Policy, 2008, 36, p 181–192

    Article  Google Scholar 

  4. H. Li, Z. Jiang, H. Feng, Q. Ma, and D. Zhan, Aging Precipitation Behavior of 18Cr-16Mn-2Mo-l.lN High Nitrogen Austenitic Stainless Steel and Its Influences on Mechanical Properties, J. Iron. Steel. Inst., 2012, 19(8), p 43–51

    Article  Google Scholar 

  5. B. Kartik, R. Veerababu, M. Sundararaman, and D.V.V. Satyanarayana, Effect of High Temperature Ageing on Microstructure and Mechanical properties of a Nickel-free High Nitrogen Austenitic Stainless Steel, Mater. Sci. Eng. A, 2015, 642, p 288–296

    Article  CAS  Google Scholar 

  6. C.C. Mohan, A. Prabhath, A.M. Cherian, S. Vadukumpully, S.V. Nair, K. Chennazhi, and D. Menon, Nanotextured Stainless Steel for Improved Corrosion Resistance and Biological Response in Coronary Stenting, Nanoscale, 2015, 7, p 832–841

    Article  CAS  Google Scholar 

  7. M. Sumita, T. Hanawa, and S.H. Teoh, Development of Nitrogen-Containing Nickel-Free Austenitic Stainless Steels for Metallic Biomaterials-Review, Mater. Sci. Eng. C, 2004, 24, p 753–760

    Article  Google Scholar 

  8. T.-H. Lee, C.-S. Oh, C.G. Lee, S.-J. Kim, and S. Takaki, Precipitation of σ-Phase in High-Nitrogen Austenitic 18Cr–18Mn–2Mo–0.9 N Stainless Steel During Isothermal Aging, Scr. Mater., 2004, 50, p 1325–1328

    Article  CAS  Google Scholar 

  9. W. Xinqiang, F. Yao, J. Huang, E. Han, W. Ke, K. Yang, and Z. Jiang, Investigation on Pitting Corrosion of Nickel-Free and Manganese-Alloyed High-Nitrogen Stainless Steels, J. Mater. Eng. Perform., 2009, 18, p 287–298

    Article  Google Scholar 

  10. S. Sun, S. Wei, G. Wang, Z. Jiang, J. Lian, and C. Ji, The Synthesis and Electrochemical Behavior of High-Nitrogen Nickel-Free Austenitic Stainless Steel, J. Mater. Eng. Perform., 2014, 23, p 3957–3962

    Article  CAS  Google Scholar 

  11. K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R Rep, 2009, 65, p 39–104

    Article  Google Scholar 

  12. T.-H. Lee, S.-J. Kim, and S. Takaki, Time-Temperature-Precipitation Characteristics of High-Nitrogen Austenitic Fe-18Cr-18Mn-2Mo-0.9 N Steel, Metall. Mater. Trans. A., 2006, 37A, p 3445–3454

    Article  CAS  Google Scholar 

  13. P. Behjatia, A. Kermanpur, A. Najafizadeh, H. Samaei Baghbadorani, L.P. Karjalainen, J.-G. Jung, and Y.-K. Lee, Design of a New Ni-Free Austenitic Stainless Steel with Unique Ultrahigh Strength-High Ductility Synergy, Mater. Des., 2014, 63, p 500–507

    Article  Google Scholar 

  14. Q.X. Dai, Z.Z. Yuan, X.M. Luo, and X.N. Cheng, Numerical Simulation of Cr2N Age-Precipitation in High Nitrogen Stainless Steels, Mater. Sci. Eng. A, 2004, 385, p 445–448

    Article  Google Scholar 

  15. S. Feng, W. Li-jun, C. Wen-fang, and L. Chun-ming, Precipitation Kinetics of Cr2N in High Nitrogen Austenitic Stainless Steel, J. Iron. Steel Res. Int., 2008, 15(6), p 72–77

    Article  Google Scholar 

  16. H. Ha and H. Kwon, Effects of Cr2N on the Pitting Corrosion of High Nitrogen Stainless Steels, Electrochim. Acta, 2007, 52, p 2175–2180

    Article  CAS  Google Scholar 

  17. M. Balakrishnan, J. Anburaj, S.S. Mohamed Nazirudeen, L. Neelakantan, and R. Narayanan, Influence of Intermetallic Precipitates on Pitting Corrosion of High Mo Superaustenitic Stainless Steel, Trans. Indian Inst. Met., 2015, 68, p 267–279

    Article  Google Scholar 

  18. Y.X. Qiao, Y.G. Zheng, W. Ke, and P.C. Okafor, Electrochemical Behaviour of High Nitrogen Stainless Steel in Acidic Solutions, Corros. Sci., 2009, 15, p 979–986

    Article  Google Scholar 

  19. F. Yao, W. Xinqiang, E.-H. Han, W. Ke, K. Yang, and Z. Jiang, Effects of Nitrogen on the Passivation of Nickel-Free High Nitrogen and Manganese Stainless Steels in Acidic Chloride Solutions, Electrochim. Acta, 2009, 54, p 4005–4014

    Article  Google Scholar 

  20. F. Yao, W. Xinqiang, E.-H. Han, W. Ke, K. Yang, and Z. Jiang, Effects of Cold Work and Sensitization Treatment on the Corrosion Resistance of High Nitrogen Stainless Steel in Chloride Solutions, Electrochim. Acta, 2009, 54, p 1618–1629

    Article  Google Scholar 

  21. S. Ningshen and U. Kamachi Mudali, Hydrogen effects on Pitting Corrosion and Semiconducting Properties of Nitrogen-Containing Type 316L Stainless Steel, Electrochim. Acta, 2009, 54, p 6374–6382

    Article  CAS  Google Scholar 

  22. Y.X. Qiao, Y.G. Zheng, P.C. Okafor, and W. Ke, Electrochemical Behaviour of High Nitrogen Bearing Stainless Steel in Acidic Chloride Solution: Effects of Oxygen, Acid Concentration and Surface Roughness, Electrochim. Acta, 2009, 54, p 2298–2304

    Article  CAS  Google Scholar 

  23. M.G. Pujar, U. Kamachi Mudali, and S.S. Singh, Electrochemical noise studies of the effect of nitrogen onpitting corrosion resistance of high nitrogen austenitic stainless steels, Corros. Sci., 2011, 53, p 4178–4186

    Article  CAS  Google Scholar 

  24. H. Lia, E. Zhou, Y. Ren, D. Zhang, X. Dake, C. Yang, H. Feng, Z. Jiang, X. Li, G. Tingyue, and K. Yang, Investigation of Microbiologically Influenced Corrosion of the High Nitrogen Nickel-Free Stainless Steel by Pseudomonas aeruginosa, Corros. Sci., 2016, 111, p 811–821

    Article  Google Scholar 

  25. H.-Y. Ha, T.-H. Lee, O. Chang-Seok, and S.-J. Kim, Effects of Combined Addition of Carbon and Nitrogen on Pitting Corrosion Behavior of Fe–18Cr–10Mn Alloys, Scr. Mater., 2009, 61, p 121–124

    Article  CAS  Google Scholar 

  26. P. Wan, Y. Ren, B. Zhang, and K. Yang, Effect of nitrogen on biocorrosion behavior of high nitrogen nickel-free stainless steel in different simulated body fluids, Mater. Sci. Eng. C, 2012, 32, p 510–516

    Article  CAS  Google Scholar 

  27. A. Poonguzhali, M.G. Pujar, and U. Kamachi Mudali, Effect of Nitrogen and Sensitization on the Microstructure and Pitting Corrosion Behavior of AISI, Type 316LN Stainless Steels, J. Mater. Eng. Perform, 2013, 22, p 1170–1178

    Article  CAS  Google Scholar 

  28. J.P. Sanhueza, D. Rojas, O. Prat, J. Garcia, R. Espinoza, C. Montalba, and M.F. Melendrez, Precipitation kinetics in a 10.5%Cr heat resistant steel: Experimental results and simulation by TC-PRISMA/DICTRA, Mater. Chem. Phys., 2017, 200, p 342–353

    Article  CAS  Google Scholar 

  29. N. Priyantha, P. Jayaweera, D.D. Macdonald, and A. Sun, An electrochemical impedance study of Alloy 22 in NaCl brine at elevated temperature. I. Corrosion behaviour, Electroanal. Chem., 2004, 572, p 409–419

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Krishna Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna Kumar, K., Anburaj, J., Dhanasekar, R. et al. Kinetics of Cr2N Precipitation and Its Effect on Pitting Corrosion of Nickel-Free High-Nitrogen Austenitic Stainless Steel. J. of Materi Eng and Perform 29, 6044–6052 (2020). https://doi.org/10.1007/s11665-020-05098-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05098-w

Keywords

Navigation