Skip to main content
Log in

Effect of Zn/Mg Ratio on Microstructure and Properties of Cold Extruded Al-xZn-2.4Mg-0.84Cu-0.2Zr-0.25Ti Aluminum Alloy

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of various Zn/Mg ratios on the microstructure and properties of cold extruded Al-xZn-2.4Mg-0.84Cu-0.2Zr-0.25Ti aluminum alloys was investigated. The microstructure analyses showed that as the Zn/Mg ratio increased from 3.46 to 3.84 and to 4.04, the recrystallization degree and the undissolved phase gradually increased. Moreover, with the increasing Zn/Mg ratio, the grain size of the alloy was refined, and the dislocation strengthening effect firstly increased and then decreased. The mechanical test results showed that as the Zn/Mg ratio increased from 3.46 to 3.84 and to 4.04, the tensile strength and hardness of the cold extruded Al-xZn-2.4Mg-0.84Cu-0.2Zr-0.25Ti alloy firstly increased and then decreased. The alloy with lower Zn/Mg ratio exhibited better capacitor characteristics, surface protection and corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Zhang, X.J. Xu, Z. Liu et al., Effect of Zn/Mg Ratio on T6 State Microstructure and Properties of Al-xZn-2.6 Mg-0.94Cu-0.2Zr-0.8Ti Cold Extruded Aluminum Alloy, Mater. Res. Exp., 2019, 6, p 1165d8

    Article  Google Scholar 

  2. Z. Liu, X.J. Xu, B. Zhang et al., Effect of Mn Element on Microstructure and Properties of 7000 Series Ultra High Strength Rolled Aluminum Alloy, Mater. Res. Exp., 2019, 6, p 076562

    Article  CAS  Google Scholar 

  3. T. Dursun and C. Soutis, Recent Developments in Advanced Aircraft Aluminium Alloys, Mater. Des., 2014, 56, p 862–871

    Article  CAS  Google Scholar 

  4. G.J. Chen, L. Chen, G.Q. Zhao et al., Microstructure Evolution During Solution Treatment of Extruded Al-Zn-Mg Profile Containing a Longitudinal Weld Seam, J. Alloys Compd., 2017, 729, p 210–221

    Article  CAS  Google Scholar 

  5. K. Chen, H. Liu, Z. Zhang, S. Li, and R.I. Todd, The Improvement of Constituent Dissolution and Mechanical Properties of 7055 Aluminum Alloy by Stepped Heat Treatments, J. Mater. Process. Technol., 2003, 142, p 190–196

    Article  CAS  Google Scholar 

  6. D. Godard, P. Archambault, E. Aeby-Gautier, and G. Lapasset, Precipitation Sequences During Quenching of the AA 7010 Alloy, Acta Mater., 2002, 50, p 2319–2329

    Article  CAS  Google Scholar 

  7. C. Mondal and A.K. Mukhopadhyay, On the Nature of T(Al2Mg3Zn3) and S(Al2CuMg) Phases Present in As-Cast and Annealed 7055 Aluminum Alloy, Mater. Sci. Eng., A, 2005, 391, p 367–376

    Article  Google Scholar 

  8. J.D. Robson, Microstructural Evolution in Aluminium Alloy 7050 During Processing, Mater. Sci. Eng., A, 2004, 382, p 112–121

    Article  Google Scholar 

  9. L.L. Rokhlin, T.V. Dobatkina, N.R. Bochvar, and E.V. Lysova, Investigation of Phase Equilibria in Alloys of the Al-Zn-Mg-Cu-Zr-Sc System, J. Alloy. Compd., 2004, 367, p 10–16

    Article  CAS  Google Scholar 

  10. L. Chen, S. Yuan, Z. Li et al., Influence of Homogenization Treatment on Microstructure and Mechanical Properties of Al-Zn-Mg Alloy Extruded by Porthole Die, Mater. Charact., 2020, 161, p 110148

    Article  CAS  Google Scholar 

  11. Y.Z. Hou, L. Chen, Z.G. Li et al., Effects of Artificial Aging on Microstructure, Mechanical Properties and Stress Corrosion Cracking of a Novel High Strength 7A99 Al Alloy, Mater. Sci. Eng., A, 2020, 780, p 139217

    Article  CAS  Google Scholar 

  12. K. Zhou, B. Wang, Y. Zhao et al., Corrosion and Electrochemical Behaviors of 7A09 Al-Zn-Mg-Cu Alloy in Chloride Aqueous Solution, Tran. Nonferrous Met. Soc., 2015, 25, p 2509–2515

    Article  CAS  Google Scholar 

  13. Y. Sun, Q. Pan, Y. Sun et al., Localized Corrosion Behavior Associated with Al7Cu2Fe Intermetallic in Al-Zn-Mg-Cu-Zr Alloy, J. Alloys Compd., 2019, 783, p 329–340

    Article  CAS  Google Scholar 

  14. P.S. Pao, C.R. Feng, and S.J. Gill, Corrosion Fatigue Crack Initiation in Aluminum Alloys 7075 and 7050, Corrosion, 2000, 56, p 1022–1031

    Article  CAS  Google Scholar 

  15. J. Soltis, Passivity Breakdown, Pit Initiation and Propagation of Pits in Metallic Materials-Review, Corros. Sci., 2015, 90, p 5–22

    Article  CAS  Google Scholar 

  16. M. Dumont, W. Lefebvre, B. Doisneau-Cottignies, and A. Deschamps, Characterisation of the Composition and Volume Fraction of η′ and η Precipitates in an Al-Zn-Mg Alloy by a Combination of Atom Probe, Small-Angle X-ray Scattering and Transmission Electron Microscopy, Acta Mater., 2005, 53, p 2881–2892

    Article  CAS  Google Scholar 

  17. M. Nishi, K. Matsuda, N. Miura et al., Effect of the Zn/Mg Ratio on Microstructure and Mechanical Properties in Al-Zn-Mg Alloys, Mater. Sci. Forum, 2014, 794-796, p 479–482

    Article  Google Scholar 

  18. S.Y. Chen, J.Y. Li, G.Y. Hu et al., Effect of Zn/Mg Ratios on SCC, Electrochemical Corrosion Properties and Microstructure of Al-Zn-Mg Alloy, J. Alloys Compd., 2018, 757, p 259–264

    Article  CAS  Google Scholar 

  19. L. Chen, G.J. Chen, J.W. Tang et al., Evolution of Grain Structure, Micro-texture and Second Phase During Porthole Die Extrusion of Al-Zn-Mg Alloy, Mater. Charact., 2019, 158, p 109953

    Article  CAS  Google Scholar 

  20. P. Luo, D.T. Mcdonald, W. Xu et al., A Modified Hall-Petch Relationship in Ultrafine-Grained Titanium Recycled from Chips by Equal Channel Angular Pressing, Scr. Mater., 2012, 66, p 785–788

    Article  CAS  Google Scholar 

  21. C.Y. Zhu, X.J. Xu, H. Wang et al., Effect of Mg on Microstructure and Properties of Al-8.95Zn-(1.9 ~ 2.6)Mg-1.18Cu-044Zr Rolled Aluminum Alloy, Mater. Res. Exp., 2018, 6, p 065803

    Article  Google Scholar 

  22. X.J. Xu, H.H. Shao, J. Gao et al., Effect of Sic Film on Tensile Properties of Nanostructured Ti Produced by Compressive Deformation at Liquid-Nitrogen Temperature, Mater. Sci. Eng., A, 2008, 493, p 195–201

    Article  Google Scholar 

  23. K.M. Youssef, R.O. Scattergood, K.L. Murty et al., Nanocrystalline Al-Mg Alloy with Ultrahigh Strength and Good Ductility, Scr. Mater., 2006, 54, p 251–256

    Article  CAS  Google Scholar 

  24. Y.H. Zhao, X.Z. Liao, Z. Jin et al., Microstructures and Mechanical Properties of Ultrafine Grained 7075 Al Alloy Processed by ECAP and Their Evolutions During Annealing, Acta Mater., 2004, 52, p 4589–4599

    Article  CAS  Google Scholar 

  25. Y. Wang, G. Zhao, X. Xu et al., Microstructures and Mechanical Properties of Spray Deposited 2195 Al-Cu-Li Alloy Through Thermo-mechanical Processing, Mater. Sci. Eng., A, 2018, 727, p 78–89

    Article  CAS  Google Scholar 

  26. A.M. Cassell, J.D. Robson, C.P. Race et al., Dispersoid Composition in Zirconium Containing Al-Zn-Mg-Cu (AA7010) Aluminium Alloy, Acta Mater., 2019, 169, p 135–146

    Article  CAS  Google Scholar 

  27. Z.Y. Chen, Y.K. Mo, and Z.R. Nie, Effect of Zn Content on the Microstructure and Properties of Super-High Strength Al-Zn-Mg-Cu Alloys, Metall. Mater. Trans. A, 2013, 44, p 3910

    Article  CAS  Google Scholar 

  28. L. Chen, Q.F. Guan, J. Cai et al., Surface Alloying of Gray Cast Iron with Chromium by High Current Pulsed Electron Beam Treatment, Mater. Res. Exp., 2018, 5, p 066518

    Article  Google Scholar 

  29. C.L. Zhang, P. Lv, J. Cai et al., Enhanced Corrosion Property of W-Al Coatings Fabricated on Aluminum Using Surface Alloying Under High-Current Pulsed Electron Beam, J. Alloys Compd., 2017, 723, p 258–265

    Article  CAS  Google Scholar 

  30. B.S. Yilbas, I. Toor, C. Karatas et al., Laser Treatment of Dual Matrix Structured Cast Iron Surface: Corrosion Resistance of Surface, Opt. Laser Eng., 2015, 64, p 17–22

    Article  Google Scholar 

  31. M. Metikošhuković, A. Kwokal, and J. Piljac, The Influence of Niobium and Vanadium on Passivity of Titanium Based Implants in Physiological SolutionA Study of Passivity of Titanium Alloys: The Influence of Alloying with Niobium and Vanadium, Eur. J. Int. Law, 2003, 11, p 489–519

    Google Scholar 

  32. J.J. Pang, F.C. Liu, J. Liu et al., Friction Stir Processing of Aluminium Alloy AA7075: Microstructure, Surface Chemistry and Corrosion Resistance, Corros. Sci., 2016, 106, p 217–228

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Thanks to the financial supports from the Key Projects of Equipment Pre-research Foundation of the Ministry of Equipment Development of the Central Military Commission of China (No:6140922010201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Xu, X., Chen, H. et al. Effect of Zn/Mg Ratio on Microstructure and Properties of Cold Extruded Al-xZn-2.4Mg-0.84Cu-0.2Zr-0.25Ti Aluminum Alloy. J. of Materi Eng and Perform 29, 5787–5795 (2020). https://doi.org/10.1007/s11665-020-05096-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05096-y

Keywords

Navigation