Skip to main content
Log in

Effects of Ti Content and Annealing on Fracture Toughness and Scratch Resistance of Electroless Ni-P-Ti Coatings

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ni-P coatings exhibit good corrosion resistance; however, they have not been used in applications where high toughness and wear resistance are required. Therefore, to enhance the toughness and wear resistance of Ni-P coatings, superelastic NiTi particles were incorporated within the Ni-P coatings. However, due to the high cost of the superelastic NiTi compared to Ti powder, Ti was co-deposited with Ni-P and subsequently annealed to produce Ni-P-NiTi coating. The fracture toughness and scratch resistance of the coatings were measured by scratch tests. The effects of Ti content and annealing on coatings’ microstructure were investigated using XRD and laser confocal microscope. The relationship between the microstructure and the fracture toughness and scratch resistance was also studied. It is found that the formation of superelastic NiTi particles within the annealed Ni-P-Ti coating significantly improves the coating’s fracture toughness and scratch resistance. The average grain sizes of Ni and Ni3P decrease with an increase in Ti content and decrease in annealing temperature and time. The reduction in grain size improves both fracture toughness and hardness (or strength), which gives rise to promoted scratch resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. D. Vojtěch, M. Novák, M. Zelinková, P. Novák, A. Michalcová, and T. Fabián, Structural Evolution of Electroless Ni-P Coating on Al-12 wt.% Si Alloy During Heat Treatment at High Temperatures, Appl. Surf. Sci., 2009, 255, p 3745–3751

    Google Scholar 

  2. C.K. Lee, Structure, Electrochemical and Wear-Corrosion Properties of Electroless Nickel–Phosphorus Deposition on CFRP Composites, Mater. Chem. Phys., 2009, 114, p 125–133

    CAS  Google Scholar 

  3. X. Xiu-qing, M. Jian, B. Zhen-quan, F. Yao-rong, M. Qiu-rong, and Z. Wen-zhen, The Corrosion Behavior of Electroless Ni-P Coating in Cl/H2S Environment, Appl. Surf. Sci., 2012, 258, p 8802–8806

    Google Scholar 

  4. Z. Li, Z.N. Farhat, G. Jarjoura, E. Fayyad, A. Abdullah, and M. Hassan, Synthesis and Characterization of Scratch Resistant Ni-P-Ti Based Composite Coating, Tribol. Trans., 2019, 62, p 880–896

    CAS  Google Scholar 

  5. C. Wang, Z. Farhat, G. Jarjoura, M.K. Hassan, and A.M. Abdullah, Indentation and Erosion Behavior of Electroless Ni-P Coating on Pipeline Steel, Wear, 2017, 376-377, p 1630–1639

    CAS  Google Scholar 

  6. C. Wang, Z. Farhat, G. Jarjoura, M.K. Hassan, A.M. Abdullah, and E.M. Fayyad, Investigation of Fracture Behavior of Annealed Electroless Ni-P Coating on Pipeline Steel Using Acoustic Emission Methodology, Surf. Coat. Technol., 2017, 326, p 336–342

    CAS  Google Scholar 

  7. M. MacLean, Z. Farhat, G. Jarjoura, E. Fayyad, A. Abdullah, and M. Hassan, Fabrication and Investigation of the Scratch and Indentation Behaviour of New Generation Ni-P-Nano-NiTi Composite Coating for Oil and Gas Pipelines, Wear, 2019, 426-427, p 265–276

    CAS  Google Scholar 

  8. A. Cosham and P. Hopkins, The Effect of Dents in Pipelines—Guidance in the Pipeline Defect Assessment Manual, Int. J. Press. Vessels Pip., 2004, 81, p 127–139

    Google Scholar 

  9. X. Tian and H. Zhang, Failure Pressure of Medium and High Strength Pipelines with Scratched Dent Defects, Eng. Fail. Anal., 2017, 78, p 29–40

    Google Scholar 

  10. X. Tian and H. Zhang, Failure Criterion of Buried Pipelines with Dent and Scratch Defects, Eng. Fail. Anal., 2017, 80, p 278–289

    CAS  Google Scholar 

  11. L. Sjögren, G. Camitz, J. Peultier, S. Jacques, V. Baudu, F. Barrau, B. Chareyre, A. Bergquist, A. Pourbaix, and P. Carpentiers, Corrosion Resistance of Stainless Steel Pipes in Soil, Mater. Corros., 2011, 62, p 299–309

    Google Scholar 

  12. C. Wang, Z. Farhat, G. Jarjoura, M.K. Hassan, and A.M. Abdullah, Indentation and Bending Behavior of Electroless Ni-P-Ti Composite Coatings on Pipeline Steel, Surf. Coat. Technol., 2018, 334, p 243–252

    CAS  Google Scholar 

  13. https://www.us-nano.com/nanopowders

  14. R. Neupane and Z. Farhat, Wear and dent Resistance of Superelastic TiNi Alloy, Wear, 2013, 301, p 682–687

    CAS  Google Scholar 

  15. Z. Farhat, G. Jarjoura, and M. Shahirnia, Dent Resistance and Effect of Indentation Loading Rate on Superelastic TiNi Alloy, Metall. Mater. Trans. A, 2013, 44, p 3544–3551

    CAS  Google Scholar 

  16. S.L. Angioni, M. Meo, and A. Foreman, Impact Damage Resistance and Damage Suppression Properties of Shape Memory Alloys in Hybrid Composites—A Review, Smart Mater. Struct., 2011, 20, p 013001

    Google Scholar 

  17. S. Miyazaki, Y.Q. Fu, and W.M. Huang, Ed., Thin Film Shape Memory Alloys, Cambridge University Press, Cambridge, 2009, p 115–117

    Google Scholar 

  18. L. Hu, Y. Xue, and F. Shi, Intermetallic Formation and Mechanical Properties of Ni-Ti Diffusion Couples, Mater. Des., 2017, 130, p 175–182

    CAS  Google Scholar 

  19. G. Chen, K.-D. Liss, and P. Cao, In Situ Observation and Neutron Diffraction of NiTi Powder Sintering, Acta Mater., 2014, 67, p 32–44

    CAS  Google Scholar 

  20. Q.J. Zhou, J.Y. He, J.X. Li, W.Y. Chu, and L.J. Qiao, Measurement of Fracture Toughness of Nickel Phosphorus Coatings, Mater. Lett., 2006, 60, p 349–351

    CAS  Google Scholar 

  21. Q.J. Zhou, J.Y. He, D.B. Sun, W.Y. Chu, and L.J. Qiao, Deformation and Fracture of Nickel Phosphorus Coatings, Scr. Mater., 2006, 54, p 603–608

    CAS  Google Scholar 

  22. D. Misra, S.M. Shariff, S. Mukhopadhyay, and S. Chatterjee, Analysis of Instrumented Scratch Hardness and Fracture Toughness Properties of Laser Surface Alloyed Tribological Coatings, Ceram. Int., 2018, 44, p 4248–4255

    CAS  Google Scholar 

  23. W.D. Callister and D.G. Rethwisch, Materials Science and Engineering an Introduction, 8th ed., Wiley, Hoboken, NJ, 2009, p 212–214

    Google Scholar 

  24. S.K. Sinha, T. Song, X. Wan, and Y. Tong, Scratch and Normal Hardness Characteristics of Polyamide 6/Nano-Clay Composite, Wear, 2009, 266, p 814–821

    CAS  Google Scholar 

  25. D. Beegan, S. Chowdhury, and M.T. Laugier, Comparison between Nanoindentation and Scratch Test Hardness (Scratch Hardness) Values of Copper Thin Films on Oxidised Silicon Substrates, Surf. Coat. Technol., 2007, 201, p 5804–5808

    CAS  Google Scholar 

  26. R.W. Armstrong, The(Cleavage) Strength of Pre-cracked Polycrystals, Eng. Fract. Mech., 1987, 28, p 529–538

    Google Scholar 

  27. M.N.B.R.J. Klassen, M.R. Bayoumi, and H.G.F. Wilsdorf, Characterization of the Effect of Alloying Elements on the Fracture Toughness of High Strength Low Alloy Steels Materials, Sci. Eng., 1986, 80, p 25–37

    CAS  Google Scholar 

  28. C. Liu, F. Su, and J. Liang, Nanocrystalline Co-Ni Alloy Coating Produced with Supercritical Carbon Dioxide Assisted Electrodeposition with Excellent Wear and Corrosion Resistance, Surf. Coat. Technol., 2016, 292, p 37–43

    CAS  Google Scholar 

  29. U. Erb, G. Palumbo, and J.L. McCrea, Chapter 5: The Processing of Bulk Nanocrystalline Metals and Alloys by Electrodeposition, Nanostructured Metals and Alloys, S.H. Whang, Ed., Woodhead Publishing, Cambridge, 2011, p 118–151

    Google Scholar 

  30. ASTM, Standard Practice for Microetching Metals and Alloys, Vol E407-07, ASTM International, West Conshohocken, PA, 2015, p 1–22

    Google Scholar 

  31. ASTM, Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing, Vol C1624-05, ASTM International, West Conshohocken, PA, 2015, p 1–29

    Google Scholar 

  32. A.-T. Akono and F.-J. Ulm, An Improved Technique for Characterizing the Fracture Toughness Via Scratch Test Experiments, Wear, 2014, 313, p 117–124

    CAS  Google Scholar 

  33. Y. Zhao, C. Jiang, Z. Xu, F. Cai, Z. Zhang, and P. Fu, Microstructure and Corrosion Behavior of Ti Nanoparticles Reinforced Ni-Ti Composite Coatings by Electrodeposition, Mater. Des., 2015, 85, p 39–46

    CAS  Google Scholar 

  34. ASTM International, Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus, Vol G173-03, ASTM International, West Conshohocken, PA, 2017, p 1–7

    Google Scholar 

  35. J.N. Balaraju, T.S.N. Sankara Narayanan, and S.K. Seshadri, Electroless Ni-P Composite Coatings, J. Appl. Electrochem., 2003, 33, p 807–816

    CAS  Google Scholar 

  36. A.W. Thompson and H.J. Saxton, Structure, Strength and Fracture of Electrodeposited Nickel and Ni-Co Alloys, Metall. Trans., 1973, 4, p 1599–1605

    CAS  Google Scholar 

  37. W. Dai, C. Oropeza, K. Lian, and W. Wang, Experiment Design and UV-LIGA Microfabrication Technology to Study the Fracture Toughness of Ni Microstructures, Microsyst. Technol., 2005, 12, p 306–314

    Google Scholar 

  38. ASTM International, Standard Test Method for Ranking Resistance of Materials to Sliding Wear Using Block-on-Ring Wear Test, Vol G77*17, ASTM International, West Conshohocken, PA, 2017, p 1–11

    Google Scholar 

  39. J.I.C.F.D. Data®, Powder Diffraction File (PDF) No. 00-008-5982, JCPDS: Newtown Square, PA, USA, 2019

  40. J.I.C.F.D. Data®, Powder Diffraction File(PDF) No. 00-015-7502, JCPDS: Newtown Square, PA, USA, 2019

  41. J.I.C.F.D. Data®, Powder Diffraction File(PDF) No. 00-004-0850, JCPDS: Newtown Square, PA, USA, 2019

  42. R.L.S.C.R. Hubbard, RIR- Measurement and Use in Quantitative XRD, Powder Diffr., 1988, 3, p 74–77

    CAS  Google Scholar 

  43. A.E. Paz y Puente and D.C. Dunand, Shape-Memory Characterization of NiTi Microtubes Fabricated Through Interdiffusion of Ti-Coated Ni Wires, Acta Mater., 2018, 156, p 1–10

    CAS  Google Scholar 

  44. J. Laeng, Z. Xiu, X. Xu, X. Sun, H. Ru, and Y. Liu, Phase Formation of Ni-Ti Via Solid State Reaction, Phys. Scr. Trans., 2007, 129, p 250–254

    Google Scholar 

  45. A.E. Paz y Puente and D.C. Dunand, Synthesis of NiTi Microtubes via the Kirkendall Effect During Interdiffusion of Ti-Coated Ni Wires, Intermetallics, 2018, 92, p 42–48

    CAS  Google Scholar 

  46. C.M.W.M. Nishida and T. Honma, Precipitation Processes in Near-Equiatomic TiNi Shape Memory Alloys, Metall. Trans. A, 1986, 17A, p 1505–1515

    CAS  Google Scholar 

  47. P. Lang, T. Wojcik, E. Povoden-Karadeniz, C.D. Cirstea, and E. Kozeschnik, Crystal Structure and Free Energy of Ti2Ni3 Precipitates in Ti-Ni Alloys from First Principles, Comput. Mater. Sci., 2014, 93, p 46–49

    CAS  Google Scholar 

  48. Z. Farhat and C. Zhang, On the Deformation of Superelastic TiNi Alloy, Tribol. Lett., 2009, 37, p 169–173

    Google Scholar 

  49. C. Zhang and Z.N. Farhat, Sliding Wear of Superelastic TiNi Alloy, Wear, 2009, 267, p 394–400

    CAS  Google Scholar 

  50. Z.N. Farhat and C.A.N. Zhang, The Role of Reversible Martensitic Transformation in the Wear Process of TiNi Shape Memory Alloy, Tribol. Trans., 2010, 53, p 917–926

    CAS  Google Scholar 

  51. R. Liu and D.Y. Li, Experimental Studies on Tribological Properties of Pseudoelastic TiNi Alloy with Comparison to Stainless Steel 304, Metall. Mater. Trans. A, 2000, 31A, p 2773–2783

    CAS  Google Scholar 

  52. E.J. Mittemeijer, Fundamentals of Materials Science, Springer, Berlin, 2010

    Google Scholar 

  53. Y.D.Z.N. Farhat, D.O. Northwood, and A.T. Alpas, Effect of Grain Size on Friction and Wear of Nanocrystalline Aluminum, Mater. Sci. Eng. A, 1996, 206, p 302–313

    Google Scholar 

  54. I. Ovidko and A. Sheinerman, Suppression of Nanocrack Generation in Nanocrystalline Materials Under Superplastic Deformation, Acta Mater., 2005, 53, p 1347–1359

    CAS  Google Scholar 

  55. I.A. Ovid’ko and A.G. Sheinerman, Ductile vs. Brittle Behavior Of Pre-cracked Nanocrystalline and Ultrafine-Grained Materials, Acta Mater., 2010, 58, p 5286–5294

    Google Scholar 

  56. Y. Liu, J. Zhou, L. Wang, S. Zhang, and Y. Wang, Grain Size Dependent Fracture Toughness of Nanocrystalline Materials, Mater. Sci. Eng. A, 2011, 528, p 4615–4619

    Google Scholar 

  57. C.R. Barrett, W.D. Nix, and A.S. Tetelman, The Principles of Engineering Materials, Prentice-Hall Inc., Upper Saddle River, NJ, 1973

    Google Scholar 

  58. S. Wang, X. Huang, M. Gong, and W. Huang, Microstructure and Mechanical Properties of Ni-P-Si3N4 Nanowire Electroless Composite Coatings, Appl. Surf. Sci., 2015, 357, p 328–332

    CAS  Google Scholar 

  59. N. Sunwang, P. Wangyao, and Y. Boonyongmaneerat, The Effects of Heat Treatments on Hardness and Wear Resistance in Ni-W Alloy Coatings, Surf. Coat. Technol., 2011, 206, p 1096–1101

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Natural Scientific and Engineering Research Council of Canada for financial contribution (Grant No. RGPIN 327449) toward this research study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Farhat, Z. Effects of Ti Content and Annealing on Fracture Toughness and Scratch Resistance of Electroless Ni-P-Ti Coatings. J. of Materi Eng and Perform 29, 5807–5821 (2020). https://doi.org/10.1007/s11665-020-05101-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05101-4

Keywords

Navigation