Skip to main content
Log in

Valorization of oat hull fiber from agri-food industrial waste as filler for poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)

  • NOTE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Oat hull fibers are an agri-food industrial waste used in this research as a filler for a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) matrix, to obtain a fully bio-based polymer-matrix composite material. The compounding process was carried out with a twin-screw extruder, avoiding chemical solvents and employing a technology commonly used by the industrial field. Silanization procedure was run to improve the affinity between the matrix and the filler. Compounds were structurally, microstructurally, mechanically and thermally characterized. Results denote that also at 8 v/v%, oat hull fibers work not only as inert filler, but also they have a slightly improving effect on mechanical properties of neat biopolymer, increasing of almost 12% the Young’s modulus, without a loss in tensile elongation at break. Therefore, this research study is a noteworthy approach which reduces the material costs and PHBH volumes, while valorizing waste biomasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Sodiq A, Baloch AAB, Khan SA et al (2019) Towards modern sustainable cities: review of sustainability principles and trends. J Clean Prod 227:972–1001. https://doi.org/10.1016/j.jclepro.2019.04.106

    Article  Google Scholar 

  2. Lestari P, Trihadiningrum Y (2019) The impact of improper solid waste management to plastic pollution in Indonesian coast and marine environment. Mar Pollut Bull 149:110505. https://doi.org/10.1016/j.marpolbul.2019.110505

    Article  Google Scholar 

  3. Mlalila N, Hilonga A, Swai H et al (2018) Antimicrobial packaging based on starch, poly(3-hydroxybutyrate) and poly(lactic-co-glycolide) materials and application challenges. Trends Food Sci Technol 74:1–11. https://doi.org/10.1016/j.tifs.2018.01.015

    Article  Google Scholar 

  4. Rujnić-Sokele M, Pilipović A (2017) Challenges and opportunities of biodegradable plastics: a mini review. Waste Manag Res 35:132–140. https://doi.org/10.1177/0734242X16683272

    Article  Google Scholar 

  5. Shogren R, Wood D, Orts W, Glenn G (2019) Plant-based materials and transitioning to a circular economy. Sustain Prod Consum 19:194–215. https://doi.org/10.1016/j.spc.2019.04.007

    Article  Google Scholar 

  6. Nanni A, Messori M (2020) Effect of the wine wastes on the thermal stability, mechanical properties, and biodegradation’s rate of poly(3-hydroxybutyrate). J Appl Polym Sci. https://doi.org/10.1002/app.49713

    Article  Google Scholar 

  7. Battegazzore D, Frache A (2019) Bio-based PA5.10 for industrial applications: improvement of barrier and thermo-mechanical properties with rice husk ash and nanoclay. J Polym Environ 27:2213–2223. https://doi.org/10.1007/s10924-019-01504-0

    Article  Google Scholar 

  8. Melendez-Rodriguez B, Torres-Giner S, Aldureid A et al (2019) Reactive melt mixing of poly(3-hydroxybutyrate)/rice husk flour composites with purified biosustainably produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Materials (Basel). https://doi.org/10.3390/ma12132152

    Article  Google Scholar 

  9. Reis KC, Pereira L, Melo ICNA et al (2015) Particles of coffee wastes as reinforcement in polyhydroxybutyrate (PHB) based composites. Mater Res 18:546–552. https://doi.org/10.1590/1516-1439.318114

    Article  Google Scholar 

  10. Melo JDD, Carvalho LFM, Medeiros AM et al (2012) A biodegradable composite material based on polyhydroxybutyrate (PHB) and carnauba fibers. Compos Part B Eng 43:2827–2835. https://doi.org/10.1016/j.compositesb.2012.04.046

    Article  Google Scholar 

  11. Cinelli P, Seggiani M, Mallegni N et al (2019) Processability and degradability of PHA-based composites in terrestrial environments. Int J Mol Sci. https://doi.org/10.3390/ijms20020284

    Article  Google Scholar 

  12. Shavandi A, Ali MA (2019) Keratin based thermoplastic biocomposites: a review. Rev Environ Sci Biotechnol 18:299–316. https://doi.org/10.1007/s11157-019-09497-x

    Article  Google Scholar 

  13. Li D, Zhou J, Ma X, Li J (2019) Synthesis of a novel biocomposite of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) reinforced with acetylated cellulose nanocrystals. Cellulose 26:8729–8743. https://doi.org/10.1007/s10570-019-02708-2

    Article  Google Scholar 

  14. Zhou J, Ma X, Li J, Zhu L (2019) Preparation and characterization of a bionanocomposite from poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) and cellulose nanocrystals. Cellulose 26:979–990. https://doi.org/10.1007/s10570-018-2136-1

    Article  Google Scholar 

  15. Cardoso MAP, Carvalho GM, Yamashita F et al (2018) Oat hull fibers bleached by reactive extrusion with alkaline hydrogen peroxide in thermoplastic starch/poly(butylene adipate-co-terephthalate) composites. Polym Compos 39:1950–1958. https://doi.org/10.1002/pc.24151

    Article  Google Scholar 

  16. Reddy JP, Misra M, Mohanty A (2013) Injection moulded biocomposites from oat hull and polypropylene/polylactide blend: Fabrication and performance evaluation. Adv Mech Eng. https://doi.org/10.1155/2013/761840

    Article  Google Scholar 

  17. Wu F, Misra M, Mohanty AK (2020) Sustainable green composites from biodegradable plastics blend and natural fibre with balanced performance: Synergy of nano-structured blend and reactive extrusion. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2020.108369

    Article  Google Scholar 

  18. da Silva PT, Yamashita F, Bilck AP et al (2019) Crosslinking starch/oat hull mixtures for use in composites with PLA. Polimeros 29:1–8. https://doi.org/10.1590/0104-1428.02519

    Article  Google Scholar 

  19. Giubilini A, Sciancalepore C, Messori M, Bondioli F (2020) New biocomposite obtained using poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) and microfibrillated cellulose. J Appl Polym Sci 48953:6–13. https://doi.org/10.1002/app.48953

    Article  Google Scholar 

  20. Ohmori M, Matijević E (1992) LETTER TO THE EDITOR preparation and properties of uniform coated colloidal particles. VII. silica on hematite. J Colloid Interface Sci 150:594–598

    Article  Google Scholar 

  21. Hong CK, Hwang I, Kim N et al (2008) Mechanical properties of silanized jute-polypropylene composites. J Ind Eng Chem 14:71–76. https://doi.org/10.1016/j.jiec.2007.07.002

    Article  Google Scholar 

  22. Yu HY, Qin ZY, Zhou Z (2011) Cellulose nanocrystals as green fillers to improve crystallization and hydrophilic property of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Prog Nat Sci Mater Int 21:478–484. https://doi.org/10.1016/S1002-0071(12)60086-0

    Article  Google Scholar 

  23. Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compound, 7th edn. Wiley, Hoboken, NJ

  24. Jiang H, Zheng Z, Wang X (2008) Kinetic study of methyltriethoxysilane (MTES) hydrolysis by FTIR spectroscopy under different temperatures and solvents. Vib Spectrosc 46:1–7. https://doi.org/10.1016/j.vibspec.2007.07.002

    Article  Google Scholar 

  25. Zhang Z, Sèbe G, Rentsch D et al (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668. https://doi.org/10.1021/cm5004164

    Article  Google Scholar 

  26. Yue Y, Han J, Han G et al (2015) Characterization of cellulose I/II hybrid fibers isolated from energycane bagasse during the delignification process: morphology, crystallinity and percentage estimation. Carbohydr Polym 133:438–447. https://doi.org/10.1016/j.carbpol.2015.07.058

    Article  Google Scholar 

  27. Tamburini D, Łucejko JJ, Zborowska M et al (2017) The short-term degradation of cellulosic pulp in lake water and peat soil: a multi-analytical study from the micro to the molecular level. Int Biodeterior Biodegrad 116:243–259. https://doi.org/10.1016/j.ibiod.2016.10.055

    Article  Google Scholar 

  28. Jun D, Guomin Z, Mingzhu P et al (2017) Crystallization and mechanical properties of reinforced PHBV composites using melt compounding: effect of CNCs and CNFs. Carbohydr Polym 168:255–262. https://doi.org/10.1016/j.carbpol.2017.03.076

    Article  Google Scholar 

  29. Jiang L, Morelius E, Zhang J et al (2008) Study of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites prepared by solution casting and melt processing. J Compos Mater 42:2629–2645. https://doi.org/10.1177/0021998308096327

    Article  Google Scholar 

  30. Taormina G, Sciancalepore C, Bondioli F, Messori M (2018) Special resins for stereolithography: in situ generation of silver nanoparticles. Polymers (Basel). https://doi.org/10.3390/polym10020212

    Article  Google Scholar 

  31. Taurino R, Sciancalepore C, Collini L et al (2018) Functionalization of PVC by chitosan addition: compound stability and tensile properties. Compos Part B Eng 149:240–247. https://doi.org/10.1016/j.compositesb.2018.05.021

    Article  Google Scholar 

  32. Sciancalepore C, Moroni F, Messori M, Bondioli F (2017) Acrylate-based silver nanocomposite by simultaneous polymerization–reduction approach via 3D stereolithography. Compos Commun 6:11–16. https://doi.org/10.1016/j.coco.2017.07.006

    Article  Google Scholar 

  33. Willson A, Takashi K (2018) Effects of glass fibers on mechanical and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Polym Compos 39:491–503

    Article  Google Scholar 

  34. Xie Y, Kohls D, Noda I et al (2009) Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) nanocomposites with optimal mechanical properties. Polymer (Guildf) 50:4656–4670. https://doi.org/10.1016/j.polymer.2009.07.023

    Article  Google Scholar 

  35. Paridah MT, Juliana AH, Zaidon A, Abdul Khalil HPS (2015) Nonwood-based composites. Curr For Reports 1:221–238. https://doi.org/10.1007/s40725-015-0023-7

    Article  Google Scholar 

  36. Srithep Y, Ellingham T, Peng J et al (2013) Melt compounding of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/nanofibrillated cellulose nanocomposites. Polym Degrad Stab 98:1439–1449. https://doi.org/10.1016/j.polymdegradstab.2013.05.006

    Article  Google Scholar 

  37. Zhou J, Ma X (2018) Preparation and characterization of a bionanocomposite from poly (3-hydroxybutyrate-co-3-hydroxyhexanoate ) and cellulose nanocrystals. Cellulose. https://doi.org/10.1007/s10570-018-2136-1

    Article  Google Scholar 

  38. Valentini F, Dorigato A, Rigotti D, Pegoretti A (2019) Polyhydroxyalkanoates/fibrillated nanocellulose composites for additive manufacturing. J Polym Environ 27:1333–1341. https://doi.org/10.1007/s10924-019-01429-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to GEA Mechanical Equipment, and particularly to Dr. Silvia Grasselli, for supplying the oat hull fibers, and they thank as well MAIP Group for supplying PHBH pellets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Giubilini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giubilini, A., Sciancalepore, C., Messori, M. et al. Valorization of oat hull fiber from agri-food industrial waste as filler for poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). J Mater Cycles Waste Manag 23, 402–408 (2021). https://doi.org/10.1007/s10163-020-01104-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-020-01104-4

Keywords

Navigation