Skip to main content
Log in

Evidence for Local Shock Melting in Seymchan Meteorite

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Pallasite Seymchan contains three morphological types of olivine grains, which occur in a FeNi matrix and have rounded, angular, and fragmental shape. Sometimes the rounded grains form clusters. The texture and mineralogical features of the olivine cluster in pallasite Seymchan were studied by optical microscopy, EMPA, and SEM. The data obtained indicate an imposed impact event in the Seymchan history, which led to local melting and rounding of initially angular olivine grains, as well as to melting of adjacent regions of the host FeNi metal. Local impact melting reasonably explains the observed textures and the coexistence of three morphological types of olivine in the pallasite Seymchan. Configuration of the intergranular boundaries in the olivine cluster indicates the phenomenon of coalescence. The phosphate–metal–sulfide films decorating the intergranular boundaries in the cluster represent the binding medium necessary for the coalescence of the olivine melt drops in the FeNi melt. The texture of the films demonstrates a liquid immiscibility in phosphate–metal–troilite melt. The metal–troilite assemblage in the films differs in texture and chemical composition from that of ordinary chondrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. The main pallasite group is abbreviated as PMG (Pallasite Main Group).

  2. The coalescence phenomenon is a merging of liquid drops of composition A in a liquid dispersed medium of another composition B. There is no direct contact between drops during coalescence. The required binding medium at the drop contact during coalescence is represented by liquid C having definite electrochemical properties. In particular, liquid C should wet the drop surface in the contact zone.

REFERENCES

  1. J. S. Boesenberg, J. S. Delaney, and R. H. Hewins, “A petrological and chemical re-examination of main group pallasite formation,” Geochim. Cosmochim. Acta 89, 134–158 (2012).

    Article  Google Scholar 

  2. C. Bollinger, B. C. Nzogang, A. Mussi, J. Bouquerel, D. A. Molodov, and P. Cordier, “Microstructural evidence for grain boundary migration and dynamic recrystallization in experimentally deformed forsterite aggregates,” Minerals 9, 17 (2019).

    Article  Google Scholar 

  3. P. R. Buseck, “Pallasite meteorites–mineralogy, petrology and geochemistry,” Geochim. Cosmochim. Acta 41, 711–740 (1977).

    Article  Google Scholar 

  4. P. R. Buseck and E. Holdsworth, “Phosphate minerals in pallasite meteorites,” Mineral. Mag. 41, 91–102 (1977).

    Article  Google Scholar 

  5. M. Chen, X. Xie, and A. El Goressy, “Nonequilibrium solidification and microstructures of metal phases in the shock-induced melt of Yanzhuang (H6) chondrite,” Meteoritics 30, 28–32 (1995).

    Article  Google Scholar 

  6. M. Chen, X. Xie, D. Wang, and S. Wang, “Metal–troilite–magnetite assemblage in shock veins of Sixiangkou meteorite,” Geochim. Cosmochim. Acta 66, 3143–3149 (2002).

    Article  Google Scholar 

  7. R. N. Clayton and T. K. Mayeda “Genetic relations between iron and stony meteorites,” Earth. Planet. Sci. Lett. 40, 168–174 (1978).

    Article  Google Scholar 

  8. M. D’Orazio, L. Folco, M. Chaussidon, and P. Rochette “Sahara 03505 sulfide-rich iron meteorite: Evidence for efficient segregation of sulfide-rich metallic melt during high-degree impact melting of an ordinary chondrite,” Meteorit. Planet. Sci. 44, 221–231 (2009).

    Article  Google Scholar 

  9. A. M. Davis and E. J. Olsen “Phosphates in pallasite meteoritesas probes of mantle processes in small planetary bodies,” Nature 353, 637–640 (1991).

    Article  Google Scholar 

  10. Emulsions, Ed. by A. A. Abramzon (Khimiya, Leningrad, 1972) [in Russian].

    Google Scholar 

  11. N. Fowler-Gerace, Textural and Geochemical Investigation of Springwater Pallasite Olivine. Thesis of Master of Applied Science (Univ. of Toronto, 2014).

  12. N. A. Fowler-Gerace, K. T. Tait, D. E. Moser, I. Barker, and B. Y. Tian, “Aligned olivine in the Springwater pallasite,” Meteorit. Planet. Sci. 51, 1125–1135 (2016).

    Article  Google Scholar 

  13. J. J. Goldstein, J. Yang, and E. Scott, “Determining cooling rates of iron and stony-iron meteorites from measurements of Ni and Co at kamasite-taenite interface,” Geochim. Cosmochim. Acta 140, 297–320 (2014).

    Article  Google Scholar 

  14. C. Hamann, A. Fazio, M. Ebert, L. Hecht, R. Wirth, L. Folco, A. Deutsch, and W. U. Reinold, “Silicate liquid immiscibility in impact melts. Meteorit. Planet.Sci. 53, 1594–1632 (2018).

    Article  Google Scholar 

  15. N. R. Khisina, R. Wirth, and A. M. Abdrakhimov, “Liquid Immiscibility in regions of localized shock-induced melting in the Elga Meteorite, Geochem. Int. 57, 903–911 (2019).

    Article  Google Scholar 

  16. Z. A. Lavrentieva, A. Yu. Lyul’, and G. M. Kolesov, “On the problem of pallasite origin,” Vestn. ONZ RAN, 2, NZ6022 (2010). https://doi.org/10.2205/2010NZ000040

    Article  Google Scholar 

  17. D. J. Malvin, J. T. Wasson, R. N. Clayton, T. K. Mayeda, and W. S. Curvello, “Bocaiuva—a silicate-inclusion bearing iron meteorites related to the Eagle station pallasites,” Meteoritics. 20, 257–272 (1985).

    Article  Google Scholar 

  18. S. J. McKibbin, T. R. Ireland, P. Holden, H. St. C. O’Neill, and G. Mallmann, “Rapid cooling of planetesimal core-mantle reaction zones from Mn–Cr isotopes in pallasites,” Geochem. Perspect. Let. 2, 68–77 (2016).

    Article  Google Scholar 

  19. S. McKibbin, L. Pittarello, C. Makarona, C. Hamman, L. Hecht, S. Chernonozhkin, and P. Claeys, “Petrogenesis of main group pallasite meteorites based on relationships among texture, mineralogy, and geochemistry,” Meteorit. Planet. Sci. 1–31 (2019).

  20. H. Miura, T. Sakai, R. Mogawa, and J. J. Jonas, “Nucleation of dynamic recrystallization and variant selection in copper bicrystals,” Philos. Mag. 87, 4197–4209 (2007).

    Article  Google Scholar 

  21. J.-G. Moreau, T. Kohout, and K. Wünnemann, “Melting efficiency of troilite-iron assemblages in shock-darkening: Insight from numerical modeling,” Phys. Earth Planet. Inter. 282, 25–38 (2018).

    Article  Google Scholar 

  22. E. Ohtani, “Formation of olivine textures in pallasites and thermal history of pallasites in their parent body,” Phys. Earth Planet. Inter. 32, 182–192 (1983).

    Article  Google Scholar 

  23. E. Olsen and K. Fredriksson, “Phosphates in iron and pallasite meteorites,” Geochim. Cosmochim. Acta. 30, 459–470 (1966).

    Article  Google Scholar 

  24. L. Rayleigh, “The stone–iron meteorites called pallasites: a synthetic study of their structure and probable mode of formation,” Proc. R. Soc. Lond. A. 179, 386–393 (1942).

    Article  Google Scholar 

  25. B. Ryzhenko and G. C. Kennedy, “The effect of pressure on the eutectic in the system Fe–FeS,” Am. J. Sci. 273, 803–810 (1973). https://doi.org/10.2475/ajs.273.9.80

    Article  Google Scholar 

  26. K. Saiki, D. Laporte, D. Vielzeuf, S. Nakashima, and P. Boivin, “Morphological analysis of olivine grains annealed in an iron-nickel matrix: experimental constraints on the origin of pallasites and on the thermal history of their parent bodies,” Meteorit. Planet. Sci. 38, 427–444 (2003).

    Article  Google Scholar 

  27. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, “Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions,” Prog. Mater. Sci. 60, 130–207 (2014).

    Article  Google Scholar 

  28. E. R. D. Scott, “Pallasites—metal composition, classification and relationships with iron meteorites,” Geochim. Cosmochim. Acta 41, 349–360 (1977a).

    Article  Google Scholar 

  29. E. R. D. Scott, “Formation of olivine-metal textures in pallasite meteorites,” Geochim. Cosmochim. Acta 41, 693–710 (1977b).

    Article  Google Scholar 

  30. E. R. D. Scott and Taylor G.J. “Origins of pallasites at the core–mantle boundaries of asteroids,” 21stLPSC, 1119–1120 (1990).

  31. T. G. Sharp and P. S. DeCarli, “Shock effects in meteorites,” In Meteorites and the Early Solar System II (Eds Lauretta D.S. and McSween H.Y.). (Univ. of Arizona Press, Tuscon, 2006), pp. 653–677.

  32. G. F. D. Solferino, G. J. Golabek, F. Nimmo, and M. W. Schmidt, “Fast grain growth of olivine in liquid Fe–S and the formation of pallasites with rounded olivine grains,” Geochim. Cosmochim. Acta. 162, 259-275 (2015).

    Article  Google Scholar 

  33. D. Stöffler, K. Keil and E. R. D. Scott “Shock metamorphism of ordinary chondrites,” Geochim. Cosmochim. Acta. 55, 3845-3867 (1991).

    Article  Google Scholar 

  34. D. Stöffler, C. Hamann, and K. Metzler, “Shock metamorphism of planetary silicate rocks and sediments: proposal for an updated classification,” Meteorit. Planet. Sci. 53, 5–49 (2018).

    Article  Google Scholar 

  35. A. G. Tomkins, “What metal-troilite textures can tell us about post-impact metamorphism in chondrite meteorites,” Meteorit. Planet. Sci. 44, 1133–1149 (2009).

    Article  Google Scholar 

  36. A. G. Tomkins, R. Weinberg, B. F. Schaefer, and A. Langendam, “Disequilibrium melting and melt migration driven by impacts: Implications for rapid planetesimal core formation,” Geochim. Cosmochim. Acta. 100, 41–59 (2013).

    Article  Google Scholar 

  37. F. Ulff-Møller, B.-G. Choi, A. E. Rubin, J. Tran, and J. T. Wasson, “Paucity of sulfide in a large slab of Esquel:new perspectives on pallasite formation,” Meteorit. Planet. Sci. 33, 221–227 (1998).

    Article  Google Scholar 

  38. D. Van Niekerk, R. C. Greenwood, and I. A. Franchi, “Seymchan: a main group pallasite – not an iron meteorite,” Meteorit. Planet. Sci. 42, (9), A154 (2007).

    Google Scholar 

  39. N. Van Roosbroek, C. Hamann, S. McKibbin, A. Greshake, R. Wirth, L. Pittarello, L. Hecht, P.Claeys, and V. Debaille “Immiscible silicate liquids and phosphoran olivine in Netschaevo IIE silicate:analogue for planetesimal core-mantle boundaries,” Geochim. Cosmochim. Acta. 197, 378–395 (2017).

    Article  Google Scholar 

  40. E. L. Walton and C. S. J. Shaw, “Understanding the textures and origin of shock melt pockets in Martian meteorites from petrographic studies, comparisons with terrestrial mantle xenoliths, and experimental studies,” Meteorit. Planet. Sci. 44, 55–76 (2009).

    Article  Google Scholar 

  41. E. L. Walton and J. G. Spray, “Mineralogy, microtexture, and composition of shock-induced melt pockets in the Los Angeles basaltic shergottite,” Meteorit. Planet. Sci. 38, 1865–1875 (2003).

    Article  Google Scholar 

  42. J. T. Wasson and B.-G. Choi, “Main-group pallasites: chemical composition, relationship to IIIAB irons, and origin,” Geochim. Cosmochim. Acta. 67, 3079–3096 (2003).

    Article  Google Scholar 

  43. X. Xie, M. Chen, S. Zhai, and F. Wang, “Eutectic metal + troilite + Fe–Mn–Na phosphate + Al-free chromite assemblage in shock-produced chondritic melt of the Yanzhuang chondrite,” Meteorit. Planet. Sci. 49, 2290–2304 (2014).

    Article  Google Scholar 

  44. J. Yang, J. I. Goldstein, and E. R. D. Scott, “Main-group pallasites: thermal history, relationship to IIIAB irons, and origin,” Geochim. Cosmochim. Acta. 74, 4471–4492 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to K.A. Lorentz for the preparation of pallasite Seymchan sample for study and K. Ryazantsev for the preparation of polished sections. Reviewers O.I. Yakovlev and V.A. Alekseev are thanked for the discussion of results and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. R. Khisina or D. D. Badyukov.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khisina, N.R., Badyukov, D.D., Senin, V.G. et al. Evidence for Local Shock Melting in Seymchan Meteorite. Geochem. Int. 58, 994–1003 (2020). https://doi.org/10.1134/S0016702920090049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920090049

Keywords:

Navigation