Skip to main content
Log in

Carbonization of Carbonates and Fractionation of Stable Carbon Isotopes in a Dynamic Slip Zone

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

Data obtained on carbonates and metaterrigenous rocks of the Devonian complex of the Sultan-Uizdag Range, northwestern Uzbekistan, which are carbonized in local deformation zones, are used in a generalized interpretation of the genesis of carbonaceous matter by means of decomposition of carbonates under the effect of seismogenic movements. The release of free carbon is facilitated by synchronous Fe–Mg metasomatism and by the reducing conditions in the presence of hydrogen. Based on literature data on experimental modeling of carbonization processes at high-speed shear deformations of carbonates in a hydrogen medium, a possible scenario is considered for the generation of hydrogen on the surfaces of quartz dislocations in the presence of water in metaterrigenous rocks in association with carbonates. The variation of carbon isotope composition over the volume of the carbonate and terrigenous rocks is extremely heterogeneous, with the 13C isotope enriched in the fracture zones and 12C enriched in the near-fracture volumes of decompression-damaged rocks. It is hypothesized that deformations can affect the fractionation of stable carbon isotopes. With regard for literature data, it is demonstrated that isotope exchange can proceed between the free carbon and carbonate carbon. Various aspects are discussed of the influence of mineral-phase and structural–textural transformations of carbonate rocks at their thermomechanical decomposition under shearing on the geomechanical behavior of the fracture, manifestations of mechanical instability in it, and causes of frictional weakening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. Herein this general term is used with reference to finely divided carbon material in the matrix of rocks (limestones, marbles, and metaterrigenous shales) that originally did not contain any appreciably concentrations of primary organic matter (whose structural state is herein not specified), and this process itself is referred to as carbonization.

REFERENCES

  1. T. Arai, T. Okusawa, and H. Tsukahara, “Behavior of gases in the Nojima Fault Zone revealed from the chemical composition and carbon isotope ratio of gases extracted from DPRI 1800 m drill core,” The Island Arc 10 (3–4), 430–438 (2001).

    Google Scholar 

  2. T. Arai, H. Tanaka, R. Ikeda, K. Omura, and T. Matsuda, “Concentration of carbon at the central plane in the Nojima fault zone,” Japan Geoscience Union Meeting 2002, abs. G061–P011 (2002).

  3. M. A. Arthur, T. F. Anderson, I. R. Kaplan, J. Veizer, and L. S. Land, “Stable isotopes in sedimentary geology,” Soc. Sediment. Geol., No. 10, (1983).

  4. A. Billi and G. Di Toro, “Fault–related carbonate rocks and earthquake indicators: recent advances and future trends,” Structural Geology: New Research, Ed. by S. J. Landlowe and G. M. Hammler (Nova Science Publishers, 2008).

  5. Y. Bottinga, “Calculated fractionation factor for carbon and hydrogen isotope exchange in the system calcite–carbon dioxide–graphite–aethane–hydrogen–water,” Geochim. Cosmochim. Acta 33 (1), 49–64 (1969).

    Google Scholar 

  6. S. S. Bukalov, L. A. Leites, and R. R. Aisin, “Laser Raman micro–spectroscopy as an effective non–destructive method of detection of various sp2 carbon modifications in industry and in nature,” Ad. Material Lett. 10 (4), 1–14 (2019).

    Google Scholar 

  7. P. R. Buseck and O. Beyssac, “From organic matter to graphite: graphitization,” Elements 10 (6), 421–426 (2014).

    Google Scholar 

  8. K. A. Campbell, J. D. Farmer,and D. Des Marais “Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments,” Geofluids 2 (2), 63–94 (2002).

    Google Scholar 

  9. B. M. Carpenter, S. Molloa, C. Viti, and C. Collettini, “Influence of calcite decarbonation on the frictional behavior of carbonate–bearing gouge: implications for the instability of volcanic flanks and fault slip,” Tectonophysics 658 (9), 128–136 (2015).

    Google Scholar 

  10. E. Crespo, J. Luque, J. F. Barrenechea, and M. Rodas, “Mechanical graphite transport in fault zones and the formation of graphite veins,” Mineral. Mag. 69 (4), 463–470 (2005).

    Google Scholar 

  11. L.-L. Cui and X. Wang, “Determination of carbon and oxygen isotopes of geological samples with a complicated matrix: comparison of different analytical methods,” Anal. Methods. 6 (22), 9173–9178 (2014).

    Google Scholar 

  12. N. De Paola, G. Chiodini, T. Hirose et al., “The geochemical signature caused by earthquake propagation in carbonate-hosted faults,” Earth Planet. Sci. Lett. 310 (3–4), 225–232 (2011).

    Google Scholar 

  13. V. V. Ez, “Problem of Urals and Tien Shan junction in the light of study of the Sultanuizdag Range,” General Questions of Tectonics. Tectonics of Russia (GEOS Moscow, 2000), pp 624–627 (2000) [in Russian].

  14. Z. Fang, Y. Liu, D. Yang, et al., “Real-time hydrogen mud logging during the Wenchuan earthquake fault scientific drilling project (WFSD), holes 2 and 3 in SW China,” Geosci. J. 22 (3), 453–464 (2018).

    Google Scholar 

  15. G. Faure, Principles of Isotope Geology (Wiley, New York, 1986).

    Google Scholar 

  16. M. Fondriest, S. A. F. Smith, T. Candela et al., “Mirror–like faults and power dissipation during earthquakes,” Geology. 41 (11), 1175–1178 (2013).

    Google Scholar 

  17. E. M. Galimov, Geochemistry of Stable Carbon Isotopes (Nedra, Moscow, 1968) [in Russian].

    Google Scholar 

  18. E. M. Galimov, O. M. Rosen, A. V. Belomestnykh, V. L. Zlobin, and I. N. Khromtsov, “Nature of graphitre in the metamorphic rocks of the Anabar Shield,” Geokhimiya, No. 3, 373––384 (1990).

    Google Scholar 

  19. E. M. Galimov, A. G. Mironov, and S. M. Zhmodik, “Nature of carbonization in the carbon–rich rocks of the Eastern Sayan,” Geochem. Int. 38 (4), 317––322 (2000).

    Google Scholar 

  20. A. A. Giardini and C. A. Salotti, “Kinetics and relations in the calcite–hydrogen reaction and relations in the dolomite–hydrogen and siderite–hydrogen systems,” Am. Mineral. 54 (7–8), 1151–1172 (1969).

    Google Scholar 

  21. R. Han, T. Shimamoto, T. Hirose, J.-H. Ree, and J. I. Ando, “Ultralow friction of carbonate faults caused by thermal decomposition,” Science 316 (5826), 878–881 (2007).

    Google Scholar 

  22. S. Hickman, M. Zoback, and W. Ellsworth, “Introduction to special section: Preparing for the San Andreas Fault Observatory at Depth,” Geophys. Res. Lett. 31, L12S01 (2004).

    Google Scholar 

  23. R. Ikeda, “Outline of the fault zone drilling project by NIED in the vicinity of the Hyodo-ken Nanbu earthquake, Japan,” The Island Arc 10 (3–4), 199–205 (2001).

    Google Scholar 

  24. T. Ito, K. Nagamine, K. Yamamoto, et al., “Preseismic hydrogen gas anomalies caused by stress–corrosion process preceding an earthquake,” Geophys. Res. Lett. 26 (13), 2009–2012 (1999).

    Google Scholar 

  25. I. Kita and S. Matsuo, “H2 generation by reaction between H2O and crushed rock: an experimental study on H2 degassing from the active fault zone,” J. Geophys. Res. 87 (B13), 10789–10795 (1982).

    Google Scholar 

  26. N. E. Kitchen and J. W. Valley, “Carbon isotope thermometry in marbles of Adirondack Mountains,” J. Metamorph. Geol. 13, 577–594 (1995).

    Google Scholar 

  27. T. Kodama, M. Tabata, K. Tominaga, et al., “Decomposition of CO2 and CO into carbon with active w0stite prepared from Zn(ll)–bearing ferrite,” J. Mater. Sci. 28, 547–552 (1993).

    Google Scholar 

  28. A. F. Korzhinskii, and G. P. Mamchur, Carbon isotope composition of graphite and carbonates from Archean gneisses of the Ukrainian shield as indicator of conditions of graphite formation, Zap. Vsesoyuz, Mineral. O–va, Ser. II, 107 (4), 442–448 (1978).

    Google Scholar 

  29. A. Kulakovskii, L. Yu. Morozov, and A. I. Smul’skaya, “Tecctonic stress as additional thermodynamic factor of metamorphism,” Geofiz. Isseld. 16 (1), 44–68 (2015).

    Google Scholar 

  30. L.-W. Kuo, et al., “Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake,” Geology 42 (1), 47–50 (2014).

    Google Scholar 

  31. L.-W. Kuo, F. De Felice, E. Spagnuolo, et al., “Fault gouge graphitization as evidence of past seismic slip,” Geology 45 (11), 979–982 (2017).

    Google Scholar 

  32. B. V. L’vov, “Mechanism and kinetics of thermal decomposition of carbonates,” Thermochim. Acta 386 (1), 1–16 (2002).

    Google Scholar 

  33. J.-C. Lee, H.-T. Chu, J. Angelier, et al., “Geometry and structure of northern surface ruptures of the 1999 Mw = 7.6 Chi–Chi Taiwan earthquake: influence from inherited fold belt structures,” J. Struct. Geol. 24 (1), 173–193 (2002).

    Google Scholar 

  34. I. P. Lugovaya, A. L. Larikov, L. I. Proskurko, and V. S. Moroz, “A comparative isotope characteristics of carbonates and graphites of the Ukrainian shield and the Voronezh crystalline massif,” Geokhim. Razrab. Rud., No. 30, 27–37 (2011).

  35. T. M. Mitchell, S. A. F. Smith, M. H. Anders, et al., “Catastrophic emplacement of giant landslides aided by thermal decomposition: Heart Mountain, Wyoming,” Earth Planet. Sci. Lett. 411, 199–207 (2015).

    Google Scholar 

  36. Yu. A. Morozov, “The structure and kinematic evolution of the Urals–Southern Tien Shan (Sultan-Uvais Range) junction region,” Geotectonics, 35 (6), 32–55 (2001).

    Google Scholar 

  37. Yu. A. Morozov, S. S. Bukalov, and L. A. Leites, “Mechanochemical transformation of shungite in a zone of dynamic movement,” Geofiz. Issled., No. 2, 5–18 (2016).

  38. Yu. A. Morozov, A. I. Smul’skaya, A. L. Kulakovskiy and M. A. Matveev, “Structural and material records of paleoearthquakes in terrigenous rocks: analysis and interpretation,” Izv. Phys. Solid Earth 54 (1), 1–22 (2018).

    Google Scholar 

  39. Yu. A. Morozov, M. A. Matveev, A. I. Smulskaya and A. L. Kulakovskii, “Two genetic types of pseudotachylytes,” Dokl. Earth Sci. 484 (2), 129–133 (2019).

    Google Scholar 

  40. Yu. A. Morozov, S. S. Bukalov, and L. A. Leites, “Structural transformation of sp2 carbon in the zones of seismogenic faults in carbonate and silicate rocks,” Dokl. Earth Sci. 490 (2), 60–64 (2020).

    Google Scholar 

  41. K. Oohashi, T. Hirose, and T. Shimamoto, “Shear–induced graphitization of carbonaceous materials during seismic fault motion: experiments and possible implications for fault mechanics,” J. Struct. Geol. 33 (6), 1122–1134 (2011).

    Google Scholar 

  42. K. Oohashi, T. Hirose, K. Kobayashi, and T. Shimamoto, “The occurrence of graphite–bearing fault rocks in the Atotsugawa fault system, Japan: origins and implications for fault creep,” J. Struct. Geol. 38 (1), 39–50 (2012).

    Google Scholar 

  43. K. Oohashi, R. Han, T. Hirose, et al., “Carbon-forming reactions under a reducing atmosphere during seismic fault slip,” Geology 42 (9), 787–790 (2014).

    Google Scholar 

  44. V. B. Polyakov and N. N. Kharlashina, “Effect of pressure on equilibrium isotopic fractionation,”Geochim. Cosmochim. Acta. 58 (21), 4739–4750 (1994).

    Google Scholar 

  45. K. M. Revesz, J. M. Landwehr, and J. Keybl, “Measurement of δ13C and δ18O isotopic ratios of CaCO3 using a Thermoquest Finnigan GasBench II Delta Plus XL continuous flow isotope ratio mass–spectrometer with application to Devils Hole Core DH–11 Calcite,” U.S. Geol. Surv. Open–File Report 01–257, (2001).

  46. C. Rodriguez-Navarro, E. Ruiz-Agudo, A. Luque, et al., “Thermal decomposition of calcite: Mechanisms of formation and textural evolution of CaO nanocrystals,” Am. Mineral. 94 (4), 578–593 (2009).

    Google Scholar 

  47. . D. Rowe, A. Fagereng, J. A. Miller, and B. Mapani, “Signature of coseismic decarbonation in dolomitic fault rocks of the Naukluft Thrust, Namibia,” Earth Planet. Sci. Lett. 333–334, 200–210 (2012)

    Google Scholar 

  48. A. Sacco and R. C. Reid, “Morphological changes in an iron catalyst and the formation of carbon fibers in the C–H–O–Fe system,” Carbon 17 (6), 459–464 (1979).

    Google Scholar 

  49. M. Sato, A. J. Sutton, and K. A. McGee, “Anomalous hydrogen emissions from the San Andreas fault observed at the Cienega Winery, central California,” Pure Appl. Geophys. 122 (2–4), 376–391 (1984).

    Google Scholar 

  50. M. Sato, A. J. Sutton, K. A. McGee, and S. Russell-Robinson, “Monitoring of hydrogen along the San Andreas and Calaveras faults in central California in 1980–1984,” J. Geophys. Res. 91 (B12), 12315–12326 (1986).

    Google Scholar 

  51. V. B. Savelieva, V. A. Ponomarchuk, and E. P. Bazarova, “Carbon isotope composition of graphite in high-grade complexes of the Sharyzhalgai marginal salient of the Siberian Platform in the area of the Baikal and Kitoi deposits,” Izv. Sib. Otd. Sekts. Nauk Zemle RAEN 39 (2), 98–109 (2011).

    Google Scholar 

  52. R. Schrader, R. Wissing, and H. Kubsch, “Zur Oberflfichenchemie von mechanisch activierten,“ Quarz. Z. Anorg. Allg. Chem. 365 (3–4), 191–198 (1969).

    Google Scholar 

  53. S. E. Schulz and J. P. Evans, “Mezoscopic structure of the Punchbowl fault, southern California, and the geological and geophysical structure of active faults,” J. Struct. Geol. 22 (7), 913–930 (2000).

    Google Scholar 

  54. S. A. Smith, F. G. Di Toro, S. Kim, et al., “Coseismic recrystallization during shallow earthquake slip,” Geology 41 (11), 63–66 (2013).

    Google Scholar 

  55. J. Sulem and V. Famin, “Thermal decomposition of carbonates in fault zones: Slip–weakening and temperature–limiting effects,” J. Geophys. Res. 114 (B3), B03309 (2009).

    Google Scholar 

  56. N. J. Tro, Chemistry: A Molecular Approach. Global Edition, 4th Edition (Pearson Education Limited, 2017).

    Google Scholar 

  57. J. Valley and J. R. O’Neil, “12C/13C exchange between calcite and graphite a possible thermometer in Grenvile marble,” Geochim. Cosmochim. Acta 15 (5), 411–419 (1981).

    Google Scholar 

  58. R. J. Van Dissen and K. R. Berryman, “Surface rupture earthquakes over last ~1000 years in the Wellington region, New Zealand, and implications for ground shaking hazard,” J. Geophys. Res. 98, 5999–6019 (1996).

    Google Scholar 

  59. H. Wakita, Y. Nakamura, I. Kita, et al., “Hydrogen release: new indicator of fault activity,” Science 210 (4466), 188–190 (1980).

    Google Scholar 

  60. J. Wheeler, “Dramatic effects of stress on metamorphic reactions,” Geology 42(8), 647–650 (2014).

    Google Scholar 

  61. J. Wheeler, “The effects of stress on reactions in the Earth: Sometimes rather mean, usually normal, always important,” J. Metamorp. Geol. 36 (4), 439–461 (2018). https://doi.org/10.1111/jmg.12299

    Article  Google Scholar 

  62. C. A. J. Wibberley and T. Shimamoto, “Internal structure and permeability of major strike–slip fault zones: The median tectonic line in Mie Prefecture, southwest Japan,” J. Struct. Geol. 25, 59–78 (2003).

    Google Scholar 

  63. V. N. Zagnitko and I. P. Lugovaya, Isotope Geochemistry of Carbonate Rocks and BIF of the Ukrainian Shield, (Naukova Dumka, Kiev, 1989) [in Russian].

    Google Scholar 

  64. Yu. D. Zakharov, O. P. Smyshlyaeva, A. M. Popov, and Ya. Shigeta, Isotope Composition of Late Mesozoic Organogenic Carbonates of Far East: Stable Oxygen and Carbon Isotopes, Main Paleoclimatic Conditions, and their Global Correlation (Dal’nauka, Vladivostok, 2006) [in Russian].

    Google Scholar 

  65. G. Zulauf, S. Palm, R. Petschick, and O. Spies, “Element mobility and volumetric strain in brittle and brittle–viscous shear zones of the super deep well KTB, Germany,” Chem. Geol. 156, 135–149 (1999).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Acad. E.M. Galimov, who supported this research and provided valuable consultations and constructive criticism of the manuscript. We also thank the reviewers for pointing out faulty issues in the manuscript and recommending how to correct them.

Funding

This study was carried out within the state assignments of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, and the Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. A. Morozov, V. S. Sevastianov, A. Yu. Yurchenko or O. V. Kuznetsova.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, Y.A., Sevastianov, V.S., Yurchenko, A.Y. et al. Carbonization of Carbonates and Fractionation of Stable Carbon Isotopes in a Dynamic Slip Zone. Geochem. Int. 58, 981–993 (2020). https://doi.org/10.1134/S0016702920090062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920090062

Keywords:

Navigation