Skip to main content
Log in

Asymptotic expansion of general relativity with Galilean covariance

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Galilean gravitation derives from a scalar potential and a vector one. Poisson’s equation to determine the scalar potential has not the expected Galilean covariance. Moreover, there are three missing equations to determine the potential vector. Besides, we require they have the Galilean covariance. These are the issues addressed in the paper. To avoid the drawbacks of the PPN approach and the NCT, we merge them into a new framework. The key idea is to take care that every term of the c expansion of the fields are Galilean covariants or invariants. The expected equations are deduced by variation of the Hilbert–Einstein functional. The contribution of the matter to the functional is derived from Souriau’s conformation tensor. We obtain a system of four non linear equations, solved by asymptotic expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andringa, R., Bergshoeff, E., Panda, S., de Roo, M.: Newtonian gravity and the Bargmann algebra. Class. Quant. Grav. 28, 105011 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  2. Andringa, R., Bergshoeff, E., Roseel, J., Sezgin, E.: 3D Newton-Cartan supergravity. Class. Quant. Grav. 30, 205005 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  3. Banerjee, R., Mukherjee, P.: Torsional Newton–Cartan geometry from Galilean gauge theory. Class. Quant. Grav. 33, 225013 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bargmann, V.: On unitary representation of continuous groups. Ann. Math. 59, 1–46 (1954)

    Article  MathSciNet  Google Scholar 

  5. Cartan, É.: Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie). Annales de l’École Normale Supérieure 40, 325–412 (1923)

    Article  MathSciNet  Google Scholar 

  6. Dautcourt, G.: Post-Newtonian extension of the Newton–Cartan theory. Class. Quant. Gravit. 14, A109 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  7. de Montigny, M., Khanna, F.C., Santanan, A.E.: Nonrelativistic wave equation with gauge fields. Int. J. Phys. A 42, 649 (2003)

    Article  MathSciNet  Google Scholar 

  8. de Saxcé, G., Vallée, C.: Affine tensors in mechanics of freely falling particles and rigid bodies. Math. Mech. Solid J. 17(4), 413–430 (2011)

    Article  MathSciNet  Google Scholar 

  9. de Saxcé, G., Vallée, C.: Galilean Mechanics and Thermodynamics of Continua. Wiley, ISTE, London (2016)

    Book  Google Scholar 

  10. Dombrowski, H.D., Horneffer, K.: Die Differentialgeometrie des Galileischen Relativitätsprinzips. Math. Zeitschr. 86, 291 (1964)

    Article  Google Scholar 

  11. Duval, C., Burdet, G., Küntzle, H.P., Perrin, M.: Bargmann structures and Newton–Cartan theory. Phys. Rev. D 31, 1841–1853 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  12. Duval, C., Gibbons, G.W., Horvathy, P.A., Zhang, P.M.: Carrol versus Newton and Galilei: two dual non-Einsteinian concepts of time. Class. Quant. Gravit. 31, 085016 (2014)

    Article  ADS  Google Scholar 

  13. Eddington, A.S.: The Mathematical Theory of Relativity. University Press, Cambridge (1922)

    MATH  Google Scholar 

  14. Ehlers, J.: Uber den Newtonschen Grenzwert Grundlagen-Probleme der Modernen Physik ed Nitsch J. Pfarr J. and Stachow, E.W., Mannheim: Bibliographisches Institut (1981)

  15. Ergen, M., Hamamci, E., Van den Bleeken, D.: Oddity in nonrelativistic, strong gravity, (preprint) arXiv:2002.02688 (2020)

  16. Fliche, H.H., Souriau, J.M., Triay, R.: Anisotropic Hubble expansion of large scale structures. Gen. Relativ. Gravit. 38, 463–474 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. Geracie, M., Prabhu, K., Roberts, M.M.: Curved non-relativistic spacetimes, Newtonian gravitation and massive matter. J. Math. Phys. 56, 103505 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Hansen, D., Hartong, J., Obers, N.: Gravity between Newton and Einstein. Int. J. Mod. Phys. D 28, 1944010 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. Hansen, D., Hartong, J., Obers, N.: Action principle for Newtonian gravity. Phys. Rev. Lett. 122, 6, 061106 (2019). arXiv:1807.04765 (2020)

  20. Hansen, D., Hartong, J., Obers, N.: Non-relativistic expansion of the Einstein–Hilbert Lagrangian. In: 15th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories. arXiv:1905.13723 (2020)

  21. Hansen, D., Hartong, J., Obers, N.: Non-relativistic gravity and its coupling to matter, (preprint) arXiv:2001.10277 (2020)

  22. Künzle, H.P.: Galilei and Lorentz structures on space-time: comparison of the corresponding geometry and physics. Annales de l’Institut Henri Poincaré section A 17(4), 337–362 (1972)

    MathSciNet  Google Scholar 

  23. Le Bellac, M., Lévy-Leblond, J.M.: Galilean electromagnetism. Nuovo Cimento 14, 217–233 (1973)

    Article  Google Scholar 

  24. Lignères, F., Rieutord, M., Reese, D.: Acoustic oscillations of rapidly rotating polytropic stars I, effects of the centrifugal distorsion. Astron. Astrophys. 455, 607–620 (2006)

    Article  ADS  Google Scholar 

  25. Loos, O.: Automorphism groups of classical mechanical systems. Monatshefte für Mathematik 100, 277–292 (1985)

    Article  MathSciNet  Google Scholar 

  26. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W H Freeman and Company, San Francisco (1973)

    Google Scholar 

  27. Ni, W.T.: Theoretical frameworks for testing relativistic gravity, a compendium of metric theories of gravity and their post-newtonian limits. Astrophys. J. 176, 769–796 (1972)

    Article  ADS  Google Scholar 

  28. Noll, W.L.: Lectures on the foundations of continuum mechanics and thermodynamics. Arch. Ration. Mech. Anal. 52, 62–92 (1973)

    Article  MathSciNet  Google Scholar 

  29. Peter, P., Uzan, J.P.: Cosmologie primordiale, \(2^{e}\) édition. Belin, Paris (2012)

    Google Scholar 

  30. Poisson, E., Will, C.: Gravity: Newtonian, Post-Newtonian, Relativistic. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  31. Santos, E.S., de Montigny, M., Khanna, F.C., Santanan, A.E.: Galilean covariant Lagrangian models. J. Theor. Phys. 37, 9771 (2004)

    MathSciNet  MATH  Google Scholar 

  32. Souriau, J.M.: Géométrie et relativité, Paris: Hermann 1964, out of print. Paris: Jacques Gabay 2008, republishing (1964)

  33. Souriau, J.M.: Structure des systèmes dynamiques. Paris: Dunod, out of print and Paris: Jacques Gabay, republishing (1970)

  34. Souriau, J.M.: Structure of Dynamical Systems, A Symplectic View of Physics. Birkhäuser Verlag, New York (1997)

    Book  Google Scholar 

  35. Souriau, J.M.: Milieux continus de dimension 1, 2 ou 3 : statique et dynamique. In: Proceeding of the 13\(^{eme}\) Congrès Français de Mécanique, Poitiers-Futuroscope, pp. 41–53 (1997)

  36. Toupin, R.: World invariant kinematics. Arch. Ration. Mech. Anal. 1, 181–211 (1957/1958)

  37. Trautman, A.: CR Acad. Sci. Paris 257(7), 317 (1963)

    Google Scholar 

  38. Trautman, A.: In: Hoffmann, B. (ed.) Perspectives in Geometry and Relativity. Indiana University Press, Bloomington (1966)

  39. Tichy, W., Flanagan, E.: Covariant formulation of the post-1-Newtonian approximation to general relativity. Phys. Rev. D 84, 044038 (2011)

    Article  ADS  Google Scholar 

  40. Truesdell, C., Toupin, R.: The classical field theories. In: Encyclopedia of Physics, S. Flügge, vol. II/1, Principles of classical mechanics and field theory. Springer, Berlin (1960)

  41. Van den Bleeken, D., Yunus, C.: Newton–Cartan, Galileo–Maxwell and Kaluza–Klein. Class. Quant. Gravit. 33, 137002 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  42. Van den Bleeken, D.: Torsional Newton–Cartan gravity from the large \(c\) expansion of general relativity. Class. Quant. Gravit. 34, 185004 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  43. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

  44. Will, C.M.: Theoretical frameworks for testing relativistic gravity II: parameterized post-Newtonian hydrodynamics and the Nordtvedt effect. Astrophys. J. 163, 611–628 (1971)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge the Mainz Institute for Theoretical Physics (MITP) for enabling me to improve significantly this work during the workshop Applied Newton–Cartan Geometry (APPNC 2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. de Saxcé.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Saxcé, G. Asymptotic expansion of general relativity with Galilean covariance. Gen Relativ Gravit 52, 89 (2020). https://doi.org/10.1007/s10714-020-02738-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02738-3

Keywords

Mathematics Subject Classification

Navigation