Skip to main content
Log in

A Novel Magnetic Immobilized Para-Aminobenzoic Acid-Cu(II) Complex: A Green, Efficient and Reusable Catalyst for Aldol Condensation Reactions in Green Media

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this the study a novel, efficient and recoverable heterogeneous nanocatalyst with regards to green chemistry purpose was approached. The structure of the newly synthesized heterogeneous magnetic nanocatalyst with enhanced and improved catalytic efficiency were determined by various instrumental techniques, including SEM, VSM, TGA, XRD, UV–VIS FT-IR and EDXA. The results, showed that the synthesized nanoparticles are superparamagnetic with a size range of 10–20 nm. Then the catalytic activity and efficient performance of Fe3O4@PABA-Cu(II) MNPs were analyzed toward the synthesis of novel 5-arylidenthiazolidine-2,4-diones and 5-arylidene-2-imidazolidine-2,4-dione derivatives via aldol condensation reactions between a variety of (hetero) aromatic aldehydes and hydantoin or thiazolidine-2,4-dione multifunctional privileged scaffolds under reflux condensations in ethanol as a benign solvent. Nontoxic nature and environment-friendly properties of the catalyst, simple workup, short time of reaction, easy separation of the catalyst from products, efficiency, and excellent yields are beneficial aspects of this method.

Graphic Abstract

It is the first report of aldol synthesis of new 5-arylidenthiazolidine-2,4-dione, and 5-arylidene-imidazolidine-2,4-dione derivatives using a reusable copper-PABA complex supported on Fe3O4 MNPs (Fe3O4@PABA-Cu(II)) catalyst in Green media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2
Scheme 3
Scheme 4
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Akhavan M, Foroughifar N, Pasdar H et al (2017) Copper(II)-complex functionalized magnetite nanoparticles: a highly efficient heterogeneous nanocatalyst for the synthesis of 5-arylidenthiazolidine-2,4-diones and 5-arylidene-2-thioxothiazolidin-4-one. Transit Met Chem 42:543–552. https://doi.org/10.1007/s11243-017-0159-3

    Article  CAS  Google Scholar 

  2. Pu Q, Kazemi M, Mohammadi M (2019) Application of transition metals in sulfoxidation reactions. Mini Rev Org Chem 16:5775–5791. https://doi.org/10.2174/1570193X16666190430154835

    Article  Google Scholar 

  3. Chen L, Noory Fajer A, Yessimbekov Z et al (2019) Diaryl sulfides synthesis: copper catalysts in C–S bond formation. J Sulfur Chem 40:451–468. https://doi.org/10.1080/17415993.2019.1596268

    Article  CAS  Google Scholar 

  4. Ghorbani-Choghamarani A, Mohammadi M, Tamoradi T, Ghadermazi M (2019) Covalent immobilization of Co complex on the surface of SBA-15: Green, novel and efficient catalyst for the oxidation of sulfides and synthesis of polyhydroquinoline derivatives in green condition. Polyhedron 158:25–35. https://doi.org/10.1016/j.poly.2018.10.054

    Article  CAS  Google Scholar 

  5. Filian H, Kohzadian A, Mohammadi M et al (2020) Pd(0)-guanidine@MCM-41: a very effective catalyst for rapid production of bis (pyrazolyl)methanes. Appl Organomet Chem. https://doi.org/10.1002/aoc.5579(Article in press)

    Article  Google Scholar 

  6. Ghorbani-Choghamarani A, Mohammadi M, Hudson RHE, Tamoradi T (2019) Boehmite@tryptophan-Pd nanoparticles: a new catalyst for C-C bond formation. Appl Organomet Chem 33:e4977. https://doi.org/10.1002/aoc.4977

    Article  CAS  Google Scholar 

  7. Kazemi M, Mohammadi M (2020) Magnetically recoverable catalysts: catalysis in synthesis of polyhydroquinolines. Appl Organomet Chem 34:e5400. https://doi.org/10.1002/aoc.5400

    Article  CAS  Google Scholar 

  8. Ghorbani-Choghamarani A, Mohammadi M, Shiri L, Taherinia Z (2019) Synthesis and characterization of spinel FeAl2O4 (hercynite) magnetic nanoparticles and their application in multicomponent reactions. Res Chem Intermed 45:5705–5723. https://doi.org/10.1007/s11164-019-03930-0

    Article  CAS  Google Scholar 

  9. Ghorbani-Choghamarani A, Mohammadi M, Taherinia Z (2019) (ZrO)2Fe2O5 as an efficient and recoverable nanocatalyst in C–C bond formation. J Iran Chem Soc 16:411–421. https://doi.org/10.1007/s13738-018-1522-9

    Article  CAS  Google Scholar 

  10. Nikoorazm M, Khanmoradi M, Mohammadi M (2020) Guanine-La complex supported onto SBA-15: a novel efficient heterogeneous mesoporous nanocatalyst for one-pot, multi-component Tandem Knoevenagel condensation–Michael addition–cyclization reactions. Appl Organomet Chem. https://doi.org/10.1002/aoc.5504

    Article  Google Scholar 

  11. Mahmoudi-GomYek S, Azarifar D, Ghaemi M et al (2019) Fe3O4-supported Schiff-base copper (II) complex: a valuable heterogeneous nanocatalyst for one-pot synthesis of new pyrano[2,3-b]pyridine-3-carboxamide derivatives. Appl Organomet Chem 33:e4918. https://doi.org/10.1002/aoc.4918

    Article  CAS  Google Scholar 

  12. Rofouei MK, Aghaei A (2013) Synthesis and spectroscopic studies of some new ortho functionalized triazene compounds and their reactivity with mercury (II) ion. J Iran Chem Soc 10:969–977. https://doi.org/10.1007/s13738-013-0234-4

    Article  CAS  Google Scholar 

  13. Tamoradi T, Mousavi SM, Mohammadi M (2020) Praseodymium(iii) anchored on CoFe2O4 MNPs: an efficient heterogeneous magnetic nanocatalyst for one-pot, multi-component domino synthesis of polyhydroquinoline and 2,3-dihydroquinazolin-4(1H)-one derivatives. New J Chem 44:3012–3020. https://doi.org/10.1039/C9NJ05468E

    Article  CAS  Google Scholar 

  14. Kazemi M, Ghobadi M, Mirzaie A (2018) Cobalt ferrite nanoparticles (CoFe2O4 MNPs) as catalyst and support: magnetically recoverable nanocatalysts in organic synthesis. Nanotechnol Rev 7:43–68. https://doi.org/10.1515/ntrev-2017-0138

    Article  CAS  Google Scholar 

  15. Mohammadi M, Ghorbani-Choghamarani A (2020) L-Methionine–Pd complex supported on hercynite as a highly efficient and reusable nanocatalyst for C–C cross-coupling reactions. New J Chem 44:2919–2929. https://doi.org/10.1039/C9NJ05325E

    Article  CAS  Google Scholar 

  16. Kazemi M, Nasr SM, Chen Z, Mohammadi M (2019) A mini-review: achievements in the thiolysis of epoxides. Mini Rev Org Chem 16:1–11. https://doi.org/10.2174/1570193x16666190723111746

    Article  CAS  Google Scholar 

  17. Kolvari E, Koukabi N, Khoramabadi-zad A et al (2014) Alternative methodologies for halogenation of organic compounds. Curr Org Synth 10:837–863. https://doi.org/10.2174/157017941006140206102541

    Article  CAS  Google Scholar 

  18. Da OhW, Lim TT (2019) Design and application of heterogeneous catalysts as peroxydisulfate activator for organics removal: an overview. Chem Eng J 358:110–133. https://doi.org/10.1016/j.cej.2018.09.203

    Article  CAS  Google Scholar 

  19. Trimm DL, Stanislaus A (1986) The control of pore size in alumina catalyst supports: a review. Appl Catal 21:215–238. https://doi.org/10.1016/S0166-9834(00)81356-1

    Article  CAS  Google Scholar 

  20. Lima CGS, Jorge EYC, Batinga LGS et al (2019) ZSM-5 zeolite as a promising catalyst for the preparation and upgrading of lignocellulosic biomass-derived chemicals. Curr Opin Green Sustain Chem 15:13–19. https://doi.org/10.1016/j.cogsc.2018.08.001

    Article  Google Scholar 

  21. Chen MN, Mo LP, Cui ZS, Zhang ZH (2019) Magnetic nanocatalysts: synthesis and application in multicomponent reactions. Curr Opin Green Sustain Chem 15:27–37. https://doi.org/10.1016/j.cogsc.2018.08.009

    Article  Google Scholar 

  22. Heravi M, Faghihi Z (2014) Applications of heteropoly acids in multi-component reactions. J Iran Chem Soc 11:209–224. https://doi.org/10.1007/s13738-013-0291-8

    Article  CAS  Google Scholar 

  23. Lashanizadegan M, Zareian Z (2011) Homogenous and heterogeneous catalytic activity of Azo-linked Schiff base complexes of Mn(II), Cu(II) and Co(II). Catal Lett 141:1698–1702. https://doi.org/10.1007/s10562-011-0709-9

    Article  CAS  Google Scholar 

  24. Afradi M, Pour SA, Dolat M, Yazdani-Elah-Abadi A (2018) Nanomagnetically modified vitamin B3 (Fe3O4@Niacin): an efficient and reusable green biocatalyst for microwave-assisted rapid synthesis of 2-amino-3-cyanopyridines in aqueous medium. Appl Organomet Chem 32:e4103. https://doi.org/10.1002/aoc.4103

    Article  CAS  Google Scholar 

  25. Rezapour E, Jafarpour M, Rezaeifard A (2018) Palladium niacin complex immobilized on starch-coated maghemite nanoparticles as an efficient homo- and cross-coupling catalyst for the synthesis of symmetrical and unsymmetrical biaryls. Catal Lett 148:3165–3177. https://doi.org/10.1007/s10562-018-2513-2

    Article  CAS  Google Scholar 

  26. Maleki M, Baghbanian SM, Tajbakhsh M (2018) Heteropolyacid immobilized on polymer/magnetic zeolite nanocomposite as a new and recyclable catalyst for the selective oxidation of alcohols. J Iran Chem Soc 15:359–368. https://doi.org/10.1007/s13738-017-1237-3

    Article  CAS  Google Scholar 

  27. Maleki A, Jafari AA, Yousefi S (2017) MgFe2O4/cellulose/SO3H nanocomposite: a new biopolymer-based nanocatalyst for one-pot multicomponent syntheses of polysubstituted tetrahydropyridines and dihydropyrimidinones. J Iran Chem Soc 14:1801–1813. https://doi.org/10.1007/s13738-017-1120-2

    Article  CAS  Google Scholar 

  28. Veisi H, Mohammadi L, Hemmati S et al (2019) In situ immobilized silver nanoparticles on Rubia tinctorum extract-coated ultrasmall iron oxide nanoparticles: an efficient nanocatalyst with magnetic recyclability for synthesis of propargylamines by A3 coupling reaction. ACS Omega 4:13991–14003. https://doi.org/10.1021/acsomega.9b01720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zolfigol MA, Ayazi-Nasrabadi R (2016) Synthesis of the first magnetic nanoparticles with a thiourea dioxide-based sulfonic acid tag: application in the one-pot synthesis of 1,1,3-tri(1: H-indol-3-yl) alkanes under mild and green conditions. RSC Adv 6:69595–69604. https://doi.org/10.1039/c6ra11620e

    Article  CAS  Google Scholar 

  30. Vernoux P, Lizarraga L, Tsampas MN et al (2013) Ionically conducting ceramics as active catalyst supports. Chem Rev 113:8192–8260. https://doi.org/10.1021/cr4000336

    Article  PubMed  CAS  Google Scholar 

  31. Amouri H, Desmarets C, Moussa J (2012) Confined nanospaces in metallocages: guest molecules, weakly encapsulated anions, and catalyst sequestration. Chem Rev 112:2015–2041. https://doi.org/10.1021/cr200345v

    Article  PubMed  CAS  Google Scholar 

  32. Marson CM (2012) Multicomponent and sequential organocatalytic reactions: diversity with atom-economy and enantiocontrol. Chem Soc Rev 41:7712–7722. https://doi.org/10.1039/c2cs35183h

    Article  PubMed  CAS  Google Scholar 

  33. Sun C, Zhou R, Jianan E et al (2016) Ascorbic acid-coated Fe3O4 nanoparticles as a novel heterogeneous catalyst of persulfate for improving the degradation of 2,4-dichlorophenol. RSC Adv 6:10633–10640. https://doi.org/10.1039/c5ra22491h

    Article  CAS  Google Scholar 

  34. Vessally E, Hosseinian A, Edjlali L et al (2016) New route to 1,4-oxazepane and 1,4-diazepane derivatives: synthesis from: N-propargylamines. RSC Adv 6:99781–99793. https://doi.org/10.1039/c6ra20718a

    Article  CAS  Google Scholar 

  35. Azarifar D, Tadayoni M, Ghaemi M (2018) γ-Fe2O3@Cu3Al-LDH-TUD as a new amphoteric, highly efficient and recyclable heterogeneous catalyst for the solvent-free synthesis of dihydropyrano[3,2-c]pyrazoles and dihydropyrano[3,2-c]chromens. Appl Organomet Chem. https://doi.org/10.1002/aoc.4293

    Article  Google Scholar 

  36. Min X, Yang W, Hui YF et al (2017) Fe3O4@ZIF-8: a magnetic nanocomposite for highly efficient UO22+ adsorption and selective UO22+/Ln3+ separation. Chem Commun 53:4199–4202. https://doi.org/10.1039/c6cc10274c

    Article  CAS  Google Scholar 

  37. Sepehrmansouri H, Zarei M, Zolfigol MA et al (2019) Multilinker phosphorous acid anchored En/MIL-100(Cr) as a novel nanoporous catalyst for the synthesis of new N-heterocyclic pyrimido[4,5-b]quinolines. Mol Catal 481:110303

    Article  CAS  Google Scholar 

  38. Rezaei M, Azizi K, Amani K (2018) Copper–birhodanine complex immobilized on Fe3O4 nanoparticles: DFT studies and heterogeneous catalytic applications in the synthesis of propargylamines in aqueous medium. Appl Organomet Chem. https://doi.org/10.1002/aoc.4120

    Article  Google Scholar 

  39. Dehbanipour Z, Moghadam M, Tangestaninejad S et al (2017) Copper(II) bis-thiazole complex immobilized on silica nanoparticles: preparation, characterization and its application as a highly efficient catalyst for click synthesis of 1,2,3-triazoles. Polyhedron 138:21–30. https://doi.org/10.1016/j.poly.2017.08.032

    Article  CAS  Google Scholar 

  40. Khodaei MM, Bahrami K, Meibodi FS (2017) Ferromagnetic nanoparticle-supported copper complex: a highly efficient and reusable catalyst for three-component syntheses of 1,4-disubstituted 1,2,3-triazoles and C-S coupling of aryl halides. Appl Organomet Chem 31:e3714. https://doi.org/10.1002/aoc.3714

    Article  CAS  Google Scholar 

  41. Xu Z, Hou Y, Sun S (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129:8698–8699. https://doi.org/10.1021/ja073057v

    Article  PubMed  CAS  Google Scholar 

  42. Kumar BRP, Nanjan MJ (2010) Novel glitazones: design, synthesis, glucose uptake and structure-activity relationships. Bioorg Med Chem Lett 20:1953–1956. https://doi.org/10.1016/j.bmcl.2010.01.125

    Article  PubMed  CAS  Google Scholar 

  43. Sandhu JS (2013) Ultrasound-assisted synthesis of 2,4-thiazolidinedione and rhodanine derivatives catalyzed by task-specific ionic liquid: [TMG][Lac]. Org Med Chem Lett 3:2. https://doi.org/10.1186/2191-2858-3-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Khajeh-Amiri A, Foroughifar N, Hassannejad F et al (2019) Microwave assisted highly efficient synthesis of rhodanine and -2, 4-thiazolidinedione derivatives under solvent free conditions. Curr Microw Chem 06:215–224. https://doi.org/10.2174/2213335606666190118163108

    Article  CAS  Google Scholar 

  45. Jawale DV, Pratap UR, Lingampalle DL, Mane RA (2011) Dicationic ionic liquid mediated synthesis of 5-arylidine-2,4-thiazolidinediones. Chin J Chem 29:942–946. https://doi.org/10.1002/cjoc.201190192

    Article  CAS  Google Scholar 

  46. Kumar KK, Sharma RSK, Babu PC et al (2017) Synthesis, characterization and pharmacological evaluation of novel spiro heterocyclic compounds as anti diabetic agents. Asian J Res Chem 10:393. https://doi.org/10.5958/0974-4150.2017.00067.0

    Article  Google Scholar 

  47. Nikalje A, Nikalje G, Deshpande D, Une H (2012) Facile synthesis and in vivo hypoglycemic activity of novel 2,4-hiazolidinedione derivatives. Eur J Exp Biol 2:343–353

    CAS  Google Scholar 

  48. Ceylan-Ünlüsoy M, Verspohl EJ, Ertan R (2010) Synthesis and antidiabetic activity of some new chromonyl-2,4-thiazolidinediones. J Enzyme Inhib Med Chem 25:784–789. https://doi.org/10.3109/14756360903357544

    Article  PubMed  CAS  Google Scholar 

  49. Marbois B, Xie LX, Choi S et al (2010) para-aminobenzoic acid is a precursor in coenzyme Q6 biosynthesis in Saccharomyces cerevisiae. J Biol Chem 285:27827–27838. https://doi.org/10.1074/jbc.M110.151894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Riedlinger J, Reicke A, Zähner H et al (2004) Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J Antibiot 57:271–279. https://doi.org/10.7164/antibiotics.57.271

    Article  PubMed  CAS  Google Scholar 

  51. Ashraf MA, Liu Z, Peng W-X, Gao C (2020) New copper complex on Fe3O4 nanoparticles as a highly efficient reusable nanocatalyst for synthesis of polyhydroquinolines in water. Catal Lett 150:683–701. https://doi.org/10.1007/s10562-019-02986-2

    Article  CAS  Google Scholar 

  52. Gasparro FP (1985) UV-induced photoproducts of paraaminobenzoid acid. Photodermatology 2:151–157

    PubMed  CAS  Google Scholar 

  53. Omar MT, Fouli AE, El-Garhi MZ (1991) Studies on 4-thiazolidinones. IX. The conversion of 5-substituted 2-thioxo-4-thiazolidinones into corresponding 2,4-thiazolidinones. Bull Chem Soc Jpn 64:750–752. https://doi.org/10.1246/bcsj.64.750

    Article  CAS  Google Scholar 

  54. Zalesov VS, Andreichikov YS, Nalimova YA et al (1978) Chemistry of oxalyl derivatives of methyl ketones: XIX. Synthesis and biological activity of 5-phenacylidenyl-tetrahydroimidazole-2,4-diones. Pharm Chem J 12:906–909. https://doi.org/10.1007/BF00777636

    Article  Google Scholar 

  55. Jahanshahi R, Akhlaghinia B (2016) CuII immobilized on guanidinated epibromohydrin functionalized γ-Fe2O3@TiO2 (γ-Fe2O3@TiO2-EGCuII): a novel magnetically recyclable heterogeneous nanocatalyst for the green one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles through alkyne-azide cycload. RSC Adv 6:29210–29219. https://doi.org/10.1039/c6ra05468d

    Article  CAS  Google Scholar 

  56. Ha YM, Kim JA, Park YJ et al (2011) Analogs of 5-(substituted benzylidene)hydantoin as inhibitors of tyrosinase and melanin formation. Biochim Biophys Acta 1810:612–619. https://doi.org/10.1016/j.bbagen.2011.03.001

    Article  PubMed  CAS  Google Scholar 

  57. Leite FHA, da Silva Santiago PBG, Froes TQ et al (2016) Structure-guided discovery of thiazolidine-2,4-dione derivatives as a novel class of Leishmania major pteridine reductase 1 inhibitors. Eur J Med Chem 123:639–648. https://doi.org/10.1016/j.ejmech.2016.07.060

    Article  PubMed  CAS  Google Scholar 

  58. Thenmozhiyal JC, Wong PTH, Chui WK (2004) Anticonvulsant activity of phenylmethylenehydantoins: a structure-activity relationship study. J Med Chem 47:1527–1535. https://doi.org/10.1021/jm030450c

    Article  PubMed  CAS  Google Scholar 

  59. Kang TH, Matsumoto K, Tohda M et al (2002) Pteropodine and isopteropodine positively modulate the function of rat muscarinic M1 and 5-HT2 receptors expressed in Xenopus oocyte. Eur J Pharmacol 444:39–45. https://doi.org/10.1016/S0014-2999(02)01608-4

    Article  PubMed  CAS  Google Scholar 

  60. Shelke KF, Sapkal SB, Kakade GK et al (2010) Alum catalyzed simple and efficient synthesis of 5-arylidene-2,4-thiazolidinedione in aqueous media. Green Chem Lett Rev 3:17–21. https://doi.org/10.1080/17518250903478345

    Article  CAS  Google Scholar 

  61. Mahalle S, Ligampalle D, Mane R (2009) Microwave-assisted synthesis of some 2,4-thiazolidinedione derivatives. Heteroat Chem An Int J Main Gr Elem 20:151–156

    Article  CAS  Google Scholar 

  62. Shah S, Singh B (2012) Urea/thiourea catalyzed, solvent-free synthesis of 5-arylidenethiazolidine-2,4-diones and 5-arylidene-2-thioxothiazolidin-4-ones. Bioorg Med Chem Lett 22:5388–5391

    Article  CAS  Google Scholar 

  63. Drawanz BB, Ribeiro CS, Masteloto HG et al (2014) Sonochemistry: a good, fast and clean method to promote the synthesis of 5-arylidene-2,4-thiazolidinediones. Ultrason Sonochem 21:1615–1617. https://doi.org/10.1016/j.ultsonch.2014.04.013

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malihe Akhavan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esam, Z., Akhavan, M., Bekhradnia, A. et al. A Novel Magnetic Immobilized Para-Aminobenzoic Acid-Cu(II) Complex: A Green, Efficient and Reusable Catalyst for Aldol Condensation Reactions in Green Media. Catal Lett 150, 3112–3131 (2020). https://doi.org/10.1007/s10562-020-03216-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03216-w

Keywords

Navigation