Skip to main content
Log in

Multiple solutions of Kazdan–Warner equation on graphs in the negative case

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let \(G=(V,E)\) be a finite connected graph, and let \(\kappa : V\rightarrow {\mathbb {R}}\) be a function such that \(\int _V\kappa \mathrm{d}\mu <0\). We consider the following Kazdan–Warner equation on G:

$$\begin{aligned} \varDelta u+\kappa -K_\lambda e^{2u}=0, \end{aligned}$$

where \(K_\lambda =K+\lambda \) and \(K: V\rightarrow {\mathbb {R}}\) is a non-constant function satisfying \(\max _{x\in V}K(x)=0\) and \(\lambda \in {\mathbb {R}}\). By a variational method, we prove that there exists a \(\lambda ^*>0\) such that when \(\lambda \in (-\infty ,\lambda ^*]\) the above equation has solutions, and has no solution when \(\lambda \ge \lambda ^*\). In particular, it has only one solution if \(\lambda \le 0\); at least two distinct solutions if \(0<\lambda <\lambda ^*\); at least one solution if \(\lambda =\lambda ^*\). This result complements earlier work of Grigor’yan et al. (Calc Var Partial Diff Equ, 55(4):13 2016), and is viewed as a discrete analog of that of Ding and Liu (Trans Am Math Soc, 347:1059–1066 1995) and Yang and Zhu (Ann Acad Sci Fenn Math, 44:167–181 2019) on manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Rabinowitz, P.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borer, F., Galimberti, L., Struwe, M.: “Large” conformal metrics of prescribing Gauss curvature on surfaces of high genus. Comment. Math. Helv. 90, 407–428 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Camilli, F., Marchi, C.: A note on Kazdan-Warner equation on networks, arXiv:1909.08472

  4. Ding, W., Liu, J.: A note on the problem of prescribing Gaussian curvature on surfaces. Trans. Am. Math. Soc. 347, 1059–1066 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ge, H.: Kazdan-Warner equation on graph in the negative case. J. Math. Anal. Appl. 453, 1022–1027 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ge, H., Jiang, W.: Kazdan-warner equation on infinite graphs. J. Korean Math. Soc. 55, 1091–1101 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Grigor’yan, A., Lin, Y., Yang, Y.: Kazdan–Warner equation on graph. Calc. Var. Partial Diff. Equ. 55(4), 13 (2016). Art. 92

    Article  MathSciNet  MATH  Google Scholar 

  8. Grigor’yan, A., Lin, Y., Yang, Y.: Yamabe type equations on graphs. J. Differ. Equ. 261, 4924–4943 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grigor’yan, A., Lin, Y., Yang, Y.: Existence of positive solutions to some nonlinear equations on locally finite graphs. Sci. China Math. 60, 1311–1324 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Han, X., Shao, M., Zhao, L.: Existence and convergence of solutions for nonlinear biharmonic equations on graphs, to appear in J. Differ. Equ. https://doi.org/10.1016/j.jde.2019.10.007

  11. Kazdan, J., Warner, F.: Curvature functions for compact 2-manifolds. Ann. Math. 99, 14–47 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kazdan, J., Warner, F.: Curvature functions for open 2-manifolds. Ann. Math. 99, 203–219 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Keller, M., Schwarz, M.: The Kazdan—Warner equation on canonically compactifiable graphs. Calc. Var. Partial Differ. Equ. 57(2), 18 (2018). Art. 70

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, Y., Wu, Y.: The existence and nonexistence of global solutions for a semilinear heat equation on graphs. Calc. Var. Partial Differ. Equ. 56(4), 22 (2017). Art. 102

    Article  MathSciNet  MATH  Google Scholar 

  15. Struwe, M.: Critical points of embeddings of \(H_0^{1, n}\) into Orlicz spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 5, 425–464 (1988)

    MathSciNet  MATH  Google Scholar 

  16. Struwe, M.: The existence of surfaces of constant mean curvature with free boundaries. Acta Math. 160, 19–64 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, Y., Zhu, X.: Prescribing Gaussian curvature on closed Riemann surface with conical singularity in the negative case. Ann. Acad. Sci. Fenn. Math. 44, 167–181 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunyan Yang.

Additional information

Communicated by J. Jost.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Yang, Y. Multiple solutions of Kazdan–Warner equation on graphs in the negative case. Calc. Var. 59, 164 (2020). https://doi.org/10.1007/s00526-020-01840-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01840-3

Mathematics Subject Classification

Navigation