Skip to main content
Log in

H(div) conforming methods for the rotation form of the incompressible fluid equations

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

New H(div) conforming finite element methods for incompressible flows are designed that involve the rotation form of the equations of motion and the Bernoulli function. With a specific choice of numerical fluxes, we recover the same velocity field as in Guzmán et al. (IMA J Numer Anal 37(4):1733–1771, 2016) for the incompressible Euler equation in the convection form. Error estimates are presented for the semi-discrete method. We further study the incompressible Navier-Stokes equation with the full version of the stress tensor \(\nu \left( \nabla \varvec{u}+ \nabla \varvec{u}^T - \frac{2}{3} \left( \nabla \cdot \varvec{u}\right) \mathbb {I} \right)\), instead of partially enforcing the divergence free constraint at the continuous level (as is commonly done in finite element methods), we let the numerical scheme to fully control the enforcement of this constraint. Finally, we test the behavior of the proposed methods with some numerical simulations. Our results show that (1) We recover the same velocity field in Guzmán et al. (2016), (2) When H(div) conforming with BDM-DG elements, we achieve less errors in the velocity compared with Schroeder et al. (SeMA J 75(4):629–653, 2018) when polynomial order \(p\in \{2,3\}\), (3) When H1 conforming with Taylor-Hood elements, the use of full stress tensor helps to reduce errors in both the velocity and the Bernoulli function, (4) H(div) conforming method does a better job in long time structure preservation compared with the classical mixed method even with the grad-div stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Unlike other studies which call \(\tilde{p}\) the Bernoulli pressure, we will use the name of Bernoulli function proposed in [21] because the physical units of the right-hand side of formula (3.2) are not those of a pressure.

References

  1. Ahmed, N.: On the grad-div stabilization for the steady Oseen and Navier-Stokes equations. Calcolo 54(1), 471–501 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21(4), 337–344 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bercovier, M., Pironneau, O.: Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math. 33(2), 211–224 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boffi, D., Brezzi, F., Fortin, M., et al.: Mixed Finite Element Methods and Applications, vol. 44. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  5. Braack, M., Burman, E., John, V., Lube, G.: Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Eng. 196(4–6), 853–866 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burman, E., Linke, A.: Stabilized finite element schemes for incompressible flow using Scott-Vogelius elements. Appl. Numer. Math. 58(11), 1704–1719 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang, C., Nelson, J.J.: Least-squares finite element method for the Stokes problem with zero residual of mass conservation. SIAM J. Numer. Anal. 34(2), 480–489 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Charnyi, S., Heister, T., Olshanskii, M.A., Rebholz, L.G.: On conservation laws of Navier-Stokes Galerkin discretizations. J. Comput. Phys. 337, 289–308 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, X., Williams, D.M.: Versatile mixed methods for the incompressible Navier-Stokes equations. arXiv preprint arXiv:2007.08015 (2020)

  10. Clancy, L.J.: Aerodynamics. Halsted Press, London (1975)

    Google Scholar 

  11. Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comput. 74(251), 1067–1095 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods, vol. 69. Springer, Berlin (2011)

    MATH  Google Scholar 

  13. Fu, G.: An explicit divergence-free DG method for incompressible flow. Comput. Methods Appl. Mech. Eng. 345, 502–517 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gelhard, T., Lube, G., Olshanskii, M.A., Starcke, J.H.: Stabilized finite element schemes with LBB-stable elements for incompressible flows. J. Comput. Appl. Math. 177(2), 243–267 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guzmán, J., Shu, C.W., Sequeira, F.A.: H-(div) conforming and DG methods for incompressible Euler’s equations. IMA J. Numer. Anal. 37(4), 1733–1771 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Horiuti, K.: Comparison of conservative and rotational forms in large eddy simulation of turbulent channel flow. J. Comput. Phys. 71(2), 343–370 (1987)

    Article  MATH  Google Scholar 

  17. Horiuti, K., Itami, T.: Truncation error analysis of the rotational form for the convective terms in the Navier-Stokes equation. J. Comput. Phys. 145(2), 671–692 (1998)

    Article  MATH  Google Scholar 

  18. Jenkins, E.W., John, V., Linke, A., Rebholz, L.G.: On the parameter choice in grad-div stabilization for the Stokes equations. Adv. Comput. Math. 40(2), 491–516 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59(3), 492–544 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kouhia, R., Stenberg, R.: A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow. Comput. Methods Appl. Mech. Eng. 124(3), 195–212 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kundu, P.K., Cohen, I., Dowling, D.: Fluid Mechanics. 1990. Google Scholar pp. 56–59

  22. Langtangen, H.P., Logg, A.: Solving PDEs in Python. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-52462-7

    Book  MATH  Google Scholar 

  23. Layton, W.: Introduction to the numerical analysis of incompressible viscous flows. SIAM (2008)

  24. Layton, W., Manica, C.C., Neda, M., Olshanskii, M., Rebholz, L.G.: On the accuracy of the rotation form in simulations of the Navier-Stokes equations. J. Comput. Phys. 228(9), 3433–3447 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Layton, W., Manica, C.C., Neda, M., Rebholz, L.G.: Numerical analysis and computational comparisons of the NS-alpha and NS-omega regularizations. Comput. Methods Appl. Mech. Eng. 199(13–16), 916–931 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Linke, A., Rebholz, L.G.: Pressure-induced locking in mixed methods for time-dependent (Navier-) Stokes equations. arXiv preprint arXiv:1808.07028 (2018)

  27. Natale, A., Cotter, C.J.: Scale-selective dissipation in energy-conserving finite-element schemes for two-dimensional turbulence. Quart. J. R. Meteorol. Soc. 143(705), 1734–1745 (2017)

    Article  Google Scholar 

  28. Natale, A., Cotter, C.J.: A variational finite-element discretization approach for perfect incompressible fluids. IMA J. Numer. Anal. 38(3), 1388–1419 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Olshanskii, M., Lube, G., Heister, T., Löwe, J.: Grad-div stabilization and subgrid pressure models for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 198(49–52), 3975–3988 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Olshanskii, M.A.: A low order Galerkin finite element method for the Navier-Stokes equations of steady incompressible flow: a stabilization issue and iterative methods. Comput. Methods Appl. Mech. Eng. 191(47–48), 5515–5536 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schroeder, P.W., Lehrenfeld, C., Linke, A., Lube, G.: Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier-Stokes equations. SeMA J. 75(4), 629–653 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schroeder, P.W., Lube, G.: Pressure-robust analysis of divergence-free and conforming FEM for evolutionary incompressible Navier-Stokes flows. J. Numer. Math. 5, 69 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Schroeder, P.W., Lube, G.: Divergence-free H (div)-FEM for time-dependent incompressible flows with applications to high Reynolds number vortex dynamics. J. Sci. Comput. 68, 1–29 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Zang, T.A.: On the rotation and Skew-symmetric forms for incompressible flow simulations. Appl. Numer. Math. 7(1), 27–40 (1991)

    Article  MATH  Google Scholar 

  35. Zhang, S.: The Divergence-Free Finite Elements for the Stationary Stokes Equations. Preprint University of Delaware (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Drapaca, C. H(div) conforming methods for the rotation form of the incompressible fluid equations. Calcolo 57, 32 (2020). https://doi.org/10.1007/s10092-020-00380-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-020-00380-8

Keywords

Mathematics Subject Classification

Navigation