Skip to main content

Advertisement

Log in

Seroepidemiology of bovine brucellosis in Colombia’s preeminent dairy region, and its potential public health impact

  • Veterinary Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

A cross-sectional study was conducted to determine the associated factors of brucellosis in Colombia’s preeminent dairy region declared in quarantine. A total of 656 samples were collected from cows ≥ 2-year-old from 40 herds. Samples were screened by the Rose Bengal Plate Test, and the Fluorescence Polarized Assay test and Competitive ELISA were used as confirmatory tests. A cow was classified as positive if the screening and both confirmatory tests were positive. A herd was classified as positive if at least one cow was seropositive. The factors associated to seropositivity were tested using a logistic regression model with explanatory variables regarding cattle management, zootechnical parameters, and sanitary practices. The seroprevalence at the animal level was 6.6% (43/656) and at herd level 27.5% (11/40). In the model, five variables explained the animal cases: purchase or animal transfer between owner’s farms (OR = 2.79, 95% CI 1.42, 5.49), history of abortion (OR = 4.22, 95% CI 1.91, 9.33), birth of weak calves (OR = 13.77, 95% CI 2.75, 68.91), use of a bull for mating (OR = 9.69, 95% CI 2.23, 42.18), and the vaccination in adulthood (OR = 3.03, 95% CI 1.04.8.78). In the model at the herd level, two variables explained the cases: birth of weak calves (OR = 9.60, 95% CI 1.54, 59.76) and purchase or animal transfer between owner’s farms (OR = 7.22, 95% CI 1.03, 50.62). These results justify the need for a quarantine declaration in the region and the implementation of epidemiological studies as a public health measures used to combat outbreak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable

References

  1. Ahasan MS, Rahman MS, Rahman AKMA, Berkvens D (2017) Bovine and Caprine Brucellosis in Bangladesh: Bayesian evaluation of four serological tests, true prevalence, and associated risk factors in household animals. Trop Anim Health Prod 49:1–11. https://doi.org/10.1007/s11250-016-1151-1

    Article  PubMed  Google Scholar 

  2. Ali S, Akhter S, Neubauer H, Melzer F, Khan I, Abatih EN, El-Adawy H, Irfan M, Muhammad A, Akbar MW, Umar S, Ali Q, Iqbal MN, Mahmood A, Ahmed H (2017) Seroprevalence and risk factors associated with bovine brucellosis in the Potohar Plateau, Pakistan. BMC Res Notes 10. https://doi.org/10.1186/s13104-017-2394-2

  3. Arif S, Thomson PC, Hernandez-Jover M, McGill DM, Warriach HM, Hayat K, Heller J (2019) Bovine brucellosis in Pakistan; an analysis of engagement with risk factors in smallholder farmer settings. Vet Med Sci 5:390–401. https://doi.org/10.1002/vms3.165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aune K, Rhyan JC, Russell R, Roffe TJ, Corso B (2012) Environmental persistence of Brucella abortus in the Greater Yellowstone area. J Wildl Manag 76:253–261. https://doi.org/10.1002/jwmg.274

    Article  Google Scholar 

  5. Avila-Granados LM, Garcia-Gonzalez DG, Zambrano-Varon JL, Arenas-Gamboa AM (2019) Brucellosis in Colombia: current status and challenges in the control of an endemic disease. Front Vet Sci. https://doi.org/10.3389/fvets.2019.00321

  6. Bronner A, Hénaux V, Fortané N, Hendrikx P, Calavas D (2014) Why do farmers and veterinarians not report all bovine abortions, as requested by the clinical brucellosis surveillance system in France? BMC Vet Res 10:93. https://doi.org/10.1186/1746-6148-10-93

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bugeza J, Muwonge A, Munyeme M, Lasuba P, Godfroid J, Kankya C (2019) Seroprevalence of bovine brucellosis and associated risk factors in Nakasongola district, Uganda. Trop Anim Health Prod 51:2073–2076. https://doi.org/10.1007/s11250-018-1631-6

    Article  PubMed  Google Scholar 

  8. Cárdenas L, Peña M, Melo O, Casal J (2019) Risk factors for new bovine brucellosis infections in Colombian herds. BMC Vet Res 15:81. https://doi.org/10.1186/s12917-019-1825-9

    Article  PubMed  PubMed Central  Google Scholar 

  9. Center for Disease Control and Prevention 2017. Brucellosis Reference Guide: Exposures, Testing and Prevention 1–35

  10. Coelho AC, Díez JG, Coelho AM (2015) Risk factors for Brucella spp. in domestic and wild animals, in: IntechOpen. InTech. https://doi.org/10.5772/61325. Available from: https://www.intechopen.com/books/updates-on-brucellosis/risk-factors-for-brucella-spp-in-domestic-and-wild-animals

  11. Contexto ganadero (2015) Fedegán participa en III Foro Internacional Lácteo de Alpina [WWW Document]. URL https://www.contextoganadero.com/regiones/fedegan-participa-en-iii-foro-internacional-lacteo-de-alpina (accessed 2.13.20)

  12. Cossaboom CM, Kharod GA, Salzer JS, Tiller RV, Campbell LP, Wu K, Negrón ME, Ayala N, Evert MN, Radowicz J, Shuford J, Stonecipher S (2018) Brucella abortus vaccine strain RB51 infection and exposures associated with raw milk consumption—Wise County, Texas, 2017. Morb Mortal Wkly Rep 67:286–287. https://doi.org/10.15585/mmwr.mm6709a4

    Article  Google Scholar 

  13. Cross PC, Cole EK, Dobson AP, Edwards WH, Hamlin KL, Luikart G, Middleton AD, Scurlock BM, White PJ (2010) Probable causes of increasing brucellosis in free-ranging elk of the greater Yellowstone ecosystem. Ecol Appl 20:278–288. https://doi.org/10.1890/08-2062.1

    Article  CAS  PubMed  Google Scholar 

  14. Cross PC, Maichak EJ, Brennan A, Scurlock BM, Henningsen J, Luikart G (2013) An ecological perspective on Brucella abortus in the western United States. OIE Rev Sci Tech 32:79–87. https://doi.org/10.20506/rst.32.1.2184

    Article  CAS  Google Scholar 

  15. Silva TIB da, Moraes RS de, Santos PdeS, Reckziegel GH, Gomes YA, Melchior LAK, Fernandes ACdeC, Baptista Filho LCF, Silva DDda, Revoredo RG, Melo LEHde (2019) Analysis of the risk factors for bovine brucellosis in dairy herds of the Rio Branco microregion, acre, Brazil Arq Inst Biol (Sao Paulo) 86. https://doi.org/10.1590/1808-1657000792018

  16. Dohoo IR, Martin SW, Stryhn H (2009) Veterinary epidemiologic research. VER, Inc.

  17. Edao BM, Hailegebreal G, Berg S, Zewude A, Zeleke Y, Sori T, Almaw G, Whatmore AM, Ameni G, Wood JLN (2018) Brucellosis in the Addis Ababa dairy cattle: the myths and the realities. BMC Vet Res 14:396. https://doi.org/10.1186/s12917-018-1709-4

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ewalt DR, Payeur JB, Rhyan JC, Geer PL (1997) Brucella suis biovar 1 in naturally infected cattle: a bacteriological, serological, and histological study. J Vet Diagn Investig 9:417–420. https://doi.org/10.1177/104063879700900414

    Article  CAS  Google Scholar 

  19. Godfroid J (2018) Brucella spp. at the wildlife-livestock interface: an evolutionary trajectory through a livestock-to-wildlife “host jump”? Vet Sci. 5. https://doi.org/10.3390/vetsci5030081

  20. Instituto Colombiano Agropecuario (2016) Boletin-Sanidad-Animal-ICA 2016 [WWW document]. URL https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/bol/epi/boletines-anuales (accessed 2.6.20)

  21. Instituto Colombiano Agropecuario (2017) Resolución 7231 de 2017. Inst. Colomb. Agropecu

  22. Instituto Colombiano Agropecuario (2018a) Resolución ICA No. 30392 de 2018 [WWW Document]. Inst. Colomb. Agropecu

  23. Instituto Colombiano Agropecuario (2018b) Instituto Colombiano Agropecuario - ICA [WWW Document]. URL https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2017.aspx (accessed 3.24.20)

  24. Instituto Colombiano Agropecuario (2019) Resolución ICA No. 7781 de 2019 [WWW Document]. Inst. Colomb. Agropecu

  25. Junqueira Junior DG, Lima AMC, Rosinha GMS, Carvalho CEG, Oliveira CE, Sanches CC (2018) Detection of Brucella abortus B19 strain DNA in seminal plasma by polymerase chain reaction in Brazil. Transbound Emerg Dis 65:476–479. https://doi.org/10.1111/tbed.12727

    Article  CAS  PubMed  Google Scholar 

  26. Kaden R, Ferrari S, Jinnerot T, Lindberg M, Wahab T, Lavander M (2018) Brucella abortus determination of survival times and evaluation of methods detection in several matrices. BMC Infect Dis 18:259. https://doi.org/10.1186/s12879-018-3134-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Langwig KE, Gomes MGM, Clark MD, Kwitny M, Yamada S, Wargo AR, Lipsitch M (2019) Limited available evidence supports theoretical predictions of reduced vaccine efficacy at higher exposure dose. Sci Rep 9:1–6. https://doi.org/10.1038/s41598-019-39698-x

    Article  CAS  Google Scholar 

  28. Letesson JJ, Barbier T, Zúñiga-Ripa A, Godfroid J, De Bolle X, Moriyón I (2017) Brucella genital tropism: What’s on the menu. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00506

  29. Lovera R, Fernández MS, Jacob J, Lucero N, Morici G, Brihuega B, Farace MI, Caracostantogolo J, Cavia R (2017) Intrinsic and extrinsic factors related to pathogen infection in wild small mammals in intensive milk cattle and swine production systems. PLoS Negl Trop Dis 11:e0005722. https://doi.org/10.1371/journal.pntd.0005722

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lucero NE, Ayala SM, Escobar GJ, Jacob NR (2008) Brucella isolated in humans and animals in Latin America from 1968 to 2006. Epidemiol Infect 136:496–503. https://doi.org/10.1017/S0950268807008795

    Article  CAS  PubMed  Google Scholar 

  31. Maichak EJ, Scurlock BM, Rogerson JD, Meadows LL, Barbknecht AE, Edwards WH, Cross PC (2009) Effects of management, behavior, and scavenging on risk of brucellosis transmission in elk of western Wyoming. J Wildl Dis 45:398–410. https://doi.org/10.7589/0090-3558-45.2.398

    Article  PubMed  Google Scholar 

  32. Matope G, Bhebhe E, Muma JB, Lund A, Skjerve E (2010) Herd-level factors for Brucella seropositivity in cattle reared in smallholder dairy farms of Zimbabwe. Prev Vet Med 94:213–221. https://doi.org/10.1016/j.prevetmed.2010.01.003

    Article  CAS  PubMed  Google Scholar 

  33. National Council of State Legislatures (2018) Brucella abortus strain RB51 vaccine licensed for use in cattle [WWW document]. State Milk Laws 17:1891–1895. https://doi.org/10.1128/CVI.00326-10

    Article  CAS  Google Scholar 

  34. Ndengu M, Matope G, de Garine-Wichatitsky M, Tivapasi M, Scacchia M, Bonfini B, Pfukenyi DM (2017) Seroprevalence of brucellosis in cattle and selected wildlife species at selected livestock/wildlife interface areas of the Gonarezhou National Park. Zimbabwe Prev Vet Med 146:158–165. https://doi.org/10.1016/j.prevetmed.2017.08.004

    Article  PubMed  Google Scholar 

  35. Negrón ME, Kharod GA, Bower WA, Walke H (2019) Notes from the Field: human Brucella abortus RB51 infections caused by consumption of unpasteurized domestic dairy products—United States, 2017–2019. MMWR Morb Mortal Wkly Rep 68:185. https://doi.org/10.15585/mmwr.mm6807a6

    Article  PubMed  PubMed Central  Google Scholar 

  36. OIE World Organization for Animal Health (2018) OIE Terrestrial Manual 2018. Chapter 3.1.4-Brucellosis (B. abortus, B. melitensis and B. suis). https://doi.org/10.5822/978-1-59726-228-6_3_WATER

  37. Olsen SC, Palmer MV (2014) Advancement of knowledge of Brucella over the past 50 years. Vet Pathol 51:1076–1089. https://doi.org/10.1177/0300985814540545

    Article  CAS  Google Scholar 

  38. Ortiz LF, Muskus C, Sánchez MM, Olivera M (2012) Identification of Brucella canis group 2 in colombian kennels. Rev Colomb Ciencias Pecu 25:615–619

    Google Scholar 

  39. Pacheco M (2014) Detecção molecular de DNA de Brucella abortus em sêmen bovino in natura. Universidade Federal de Uberlândia, Minas Gerais

    Google Scholar 

  40. Pacheco-Montealegre M, Patiño RE, Torres L, Jiménez S, Rodríguez JL, Caro-Quintero A (2017) The draft genome of Brucella abortus strain Ba col-B012, isolated from a dairy farm in Nariño, Colombia, bring new insights into the epidemiology of biovar 4 strains. Stand Genomic Sci 12:89. https://doi.org/10.1186/s40793-017-0299-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pérez Franco JJ (1972) Aislamiento de Brucella suis de cabras

  42. Rhyan JC, Nol P, Quance C, Gertonson A, Belfrage J, Harris L, Straka K, Robbe-Austerman S (2013) Transmission of brucellosis from elk to cattle and bison, Greater Yellowstone area, USA, 2002-2012. Emerg Infect Dis 19:1992–1995. https://doi.org/10.3201/eid1912.130167

    Article  PubMed  PubMed Central  Google Scholar 

  43. Robinson A (2003) Guidelines for coordinated human and animal brucellosis surveillance. FAO animal production and animal health paper 156. Emergency Prevention System, Food and Agriculture Organization of the United Nations

  44. Samartino L, Eddi C (2010) Zoonosis en los sistemas de producción animal de las áreas urbanas y periurbanas de América Latina. Language (Baltim) 27:1–7

    Google Scholar 

  45. Smirnova EA, Vasin AV, Sandybaev NT, Klotchenko SA, Plotnikova MA, Chervyakova OV, Sansyzbay AR, Kiselev OI (2013) Current methods of human and animal brucellosis diagnostics. Adv Infect Dis 03:177–184. https://doi.org/10.4236/aid.2013.33026

    Article  Google Scholar 

  46. Thrusfield M (2007) Veterinary epidemiology, Third Edition. Can Vet J 60:263–264. https://doi.org/10.1016/S0167-5877(03)00107-7

    Article  Google Scholar 

  47. Valencia M, Guzmán M (1987) Brucelosis Humana. Bogotá DC, Colombia: Instituto Nacional de Salud INS

  48. Vicente J, Vercauteren KC, Vercauteren K (2019) The role of scavenging in disease dynamics. https://doi.org/10.1007/978-3-030-16501-7_7

  49. World Health Organization and Pan American Health Organization (2016) 55.o Consejo Directivo. 68.a Sesión del Comité Regional de la OMS para las Americas

  50. Yamamoto T, Tsutsui T, Nishiguchi A, Kobayashi S (2008) Evaluation of surveillance strategies for bovine brucellosis in Japan using a simulation model. Prev Vet Med 86:57–74. https://doi.org/10.1016/j.prevetmed.2008.03.004

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Colombian Agricultural Institute and the Federal Rural University of Rio de Janeiro for facilitating the execution of this study. We also thank TestLab S.A.S for their collaboration with the laboratory process. Finally, special thanks to Corpogansa del Norte of Antioquia for their support with our fieldwork, especially their associates for allowing us to conduct the research on their cattle.

Funding

This work was supported by the Coordination for the Improvement of Higher Education Personnel (CAPES, finance code 001). This work was financial supported, by the National Council for Scientific and Technological Development (CNPq) for the fellowship granted to HAS (Research Productivity Scholarship, grant number 310819/2018-0) and the Foundation Carlos Chagas Filho Research Support of the State of Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Contributions

OLH: conceptualization, methodology, formal analysis, investigation, writing, review and editing. HAS and IDA: conceptualization, methodology, review, editing, supervision and project administration and funding acquisition. ILJ: participated in the methodology, review and editing.

Corresponding author

Correspondence to Olga Lucia Herrán Ramirez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Research Ethics Committee (CEP Approval number 1.243/18) and by the Ethics Committee for Animal Use (CEUA Approval number 8427171219) for the Veterinary Institute of Rural Federal University of Rio de Janeiro (UFRRJ).

Consent to participate

Herd managers voluntarily signed the informed consent agreement to participate.

Consent for publication

Not applicable

Code availability

Not applicable

Additional information

Responsible Editor: Roxane Piazza

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrán Ramirez, O.L., Azevedo Santos, H., Jaramillo Delgado, I.L. et al. Seroepidemiology of bovine brucellosis in Colombia’s preeminent dairy region, and its potential public health impact. Braz J Microbiol 51, 2133–2143 (2020). https://doi.org/10.1007/s42770-020-00377-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00377-z

Keywords

Navigation