Skip to main content
Log in

Unsteady Heat and Mass Transfer in Structured Media and Gel

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Modern trends in the development of chemical technology require a detailed study of the processes of heat and mass transfer in microchannels of various dispersed and microstructured media. This is due to the search for scientifically based ways to improve chemical and biochemical reactors, the need to create new equipment for nuclear energy and the current level of development of regenerative medicine towards the application of additive bioprinting technologies. In this case heat and mass transfer occur under non-stationary conditions, microchannels have a complex geometric shape, transfer can be accompanied by spontaneous convection, possible phase transitions, and chemical and biochemical transformations occur. Mathematical modeling of the outflow of a two-phase liquid-vapor medium from a layer of granular particles was performed using the method of smoothed particles hydrodynamics. The data on the visualization of the flow in the granular bed are presented. The dependences of the mass flow rate of the vapor-liquid mixture depending on the pressure drop in the pipe with a granular bed were established. The study of the occurrence and development of convective flows in the process of unsteady conductive heating of the cell wall with spherical and cylindrical particles has been carried out. Holographic interferometry with immersion optical tomography elements was used to measure temperature fields. Under the conditions of varying the thermophysical properties of the liquid, particles of the granular bed, as well as the magnitude of the supplied heat flux, the mechanism of the influence of filling on the time and nature of microconvection formation near contact spots was studied. A model of mass transfer in a gel was proposed for modeling the process of microorganisms feeding in the bioreactor. The model allows to determine the dynamics of microorganisms growth in the volume of the gel. In the experiments, gels based on agarose and a mixture of agarose and starch were studied. The proposed approach is promising for creating living tissue by bioprinting using gels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Cooper, M., Small modular reactors and the future of nuclear power in the United States, Energy Res. Soc. Sci., 2014, no. 3, p. 161.

  2. Low-Power Nuclear Power Plants – A New Line in the Development of Power Systems, Sarkisov, A., Ed., Moscow: Nauka, 2011.

    Google Scholar 

  3. Kutateladze, S.S., Osnovy teorii teploobmena (Fundamentals of Heat Transfer Theory), Moscow: Atomizdat, 1979.

  4. Rassokhin, N.G., Kuzevanov, V.S., Tsiklauri, G.V., Marinchek, Z., and Sella, J., Critical conditions for unsteady outflow of a two-phase medium with a pipeline break, TVT, 1977, vol. 15, no. 3, p. 589.

    CAS  Google Scholar 

  5. Wallis, G.B., One-Dimensional Two-Phase Flow, New York: McGraw-Hill, 1969.

    Google Scholar 

  6. Nigmatulin, R.I., Dinamika mnogofaznykh sred: v 2 ch. (Dynamics of Multiphase Media, 2 vols.), Moscow: Nauka, 1987.

  7. Edwards, F.R. and O’Brien, T.P., Studies of phenomena connected with depressurization of water reactor, J. Br. Nucl. Energy Soc., 1970, vol. 9, p. 125.

    Google Scholar 

  8. Tairov, E.A., Pokusaev, B.G., and Bykova, S.M., Vapor–liquid critical flow through a layer of spherical particles, High Temp., 2016, vol. 54, p. 262.

    Article  Google Scholar 

  9. Goldstick, M.A., Protsessy perenosa v zernistom sloe (Transfer Processes in Granular Layer), Novosibirsk: Inst. Termofiziki, Sib. Otd., Ross. Akad. Nauk, 2005.

  10. Pokusaev, B.G., Tairov, E.A., Khan, P.V., and Khramtsov, D.P., Numerical and analytical approaches to modeling critical two-phase flow with granular layer, J. Eng. Thermophys., 2018, vol. 27, no. 1, p. 1.

    Article  Google Scholar 

  11. Latif, M., Heat Convection, Berlin: Springer-Verlag, 2009.

    Google Scholar 

  12. Lappa, M., Thermal Convection: Patterns, Evolution, Stability, Chichester: Wiley, 2010.

    Google Scholar 

  13. Bilgen, E., Conjugate heat transfer by conduction and natural convection on a heated vertical wall, App. Therm. Eng., 2009, vol. 29, nos. 2–3, p. 334.

    Article  Google Scholar 

  14. Adrian, R.J., Ferreira, R.T.D.S., and Boberg, T., Turbulent thermal convection in wide horizontal fluid layers, Exp. Fluids, 1986, vol. 4, no. 4, p. 121.

    Article  Google Scholar 

  15. Schwabe, D. and Metzger, J., Coupling and separation of buoyant and thermocapillary convection, J. Cryst. Growth, 1989, vol. 97, no. 1, p. 23.

    Article  Google Scholar 

  16. Kurian, V., Varma, M.N., and Kannan A., Numerical studies on laminar natural convection inside inclined cylinders of unity aspect ratio, Int. J. Heat Mass Transfer, 2009, vol. 52, nos. 3–4, p. 822.

    Article  CAS  Google Scholar 

  17. Terekhov, V.I., Kalinina, S.V., and Lemanov, V.V., The mechanism of heat transfer in nanofluids: state of the art (review). Part 2. Convective heat transfer, Thermophys. Aeromech., 2010, vol. 17, no. 2, p. 157.

    Article  Google Scholar 

  18. Terekhov, V.I. and Ekaid, A.L., Three-dimensional laminar convection in a parallelepiped with heating of two side walls, High Temp., 2011, vol. 49, no. 6, p. 874.

    Article  CAS  Google Scholar 

  19. Sparrow, E.M., Husar, R.B., and Goldstein, R.J., Observations and other characteristics of thermals, J. Fluid Mech., 1970, vol. 41, no. 4, p. 793.

    Article  Google Scholar 

  20. Martynenko, O.G. and Khramtsov, P.P., Free-Convective Heat Transfer: With Many Photographs of Flows and Heat Exchange, Berlin: Springer-Verlag, 2005.

    Google Scholar 

  21. Pokusaev, B.G., Kazenin, D.A., Karlov, S.P., and Vyazmin, A.V., Interfacial mass transfer in the liquid-gas system: An optical study, Theor. Found. Chem. Eng., 2001, vol. 35, no. 3, p. 227.

    Google Scholar 

  22. Hauf, W. and Grigull, U., Optical methods in heat transfer, Adv. Heat Transfer, 1970, vol. 6, p. 133. https://doi.org/10.1016/S0065-2717(08)70151-5

    Article  Google Scholar 

  23. Pokusaev, B.G., Karlov, S.P., Nekrasov, D.A., and Zakharov, N.S., Onset of convective flows in a near-wall granular layer during nonstationary liquid boiling, Tech. Phys. Lett., 2014, vol. 40, no. 8, p. 680.

    Article  Google Scholar 

  24. Pokusaev, B.G. and Nekrasov, D.A., Mathematical simulation of transient processes in a circular channel with granular layer under conditions of subcooled water boiling. Formation of pressure wave, High Temp., 2008, vol. 46, no. 3, p. 367.

    Article  CAS  Google Scholar 

  25. Situ, R., Ishii, M., Hibiki, T., Tu, J.Y., Yeoh, G.H, and Mori, M., Bubble departure frequency in forced convective subcooled boiling flow, Int. J. Heat Mass Transfer, 2008, vol. 51, p. 6268.

    Article  Google Scholar 

  26. Placzek, M.R., Chung, I.M., Macedo, H.M., Ismail, S., Mortera Blanco, T., and Lim, M., Stem cell bioprocessing: fundamentals and principles, J. R. Soc. Interface, 2009, vol. 6, p. 209.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, S., Lee, J.M., and Yeong, W.Y., Smart hydrogels for 3D bioprinting, Int. J. Bioprint., 2015, vol. 1, no. 1, p. 3.

    Google Scholar 

  28. Gels: Structures, Properties, and Functions: Fundamentals and Applications, Progress in Colloid and Polymer Science, vol. 136, Tokita, M. and Nishinari, K., Eds., Berlin: Springer-Verlag, 2009.

    Google Scholar 

  29. Gels Handbook, vols. 1–4, Kajiwara, K. and Osada, Yo., Eds., Amsterdam: Elsevier, 2000.

  30. Molecular Gels: Materials with Self-Assembled Fibrillar Networks, Weiss, R.G. and Terech, P., Eds., Dordrecht: Springer, 2006.

    Google Scholar 

  31. Patel, H., Bonde, M., and Srinivasan G., Biodegradable polymer scaffold for tissue engineering, Trends Biomater. Artif. Organs, 2011, vol. 25, no. 1, p. 20.

    Google Scholar 

  32. Hutmacher, D.W., Goh, J.C., and Teoh, S.H., An introduction to biodegradable materials for tissue engineering applications. Ann. Acad. Med. Singapore, 2001, vol. 30, no. 2, p. 183.

    CAS  PubMed  Google Scholar 

  33. Chieh, H.-F., Sun, Yu., Liao, J.-D., Su, F.-Ch., Zhao, Ch., Amadio, P.S., and An, K.-N., Effects of cell concentration and collagen concentration on contraction kinetics and mechanical properties in a bone marrow stromal cell-collagen construct, J. Biomed. Mater. Res. A, 2010, vol. 93, no. 3, p. 1132.

    PubMed  PubMed Central  Google Scholar 

  34. Buckley, C.T., Thorpe, S.D., O’Brien, F.J., Robinson, A.J., and Kelly, D.J., The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels, J. Mech. Behav. Biomed. Mater., 2009, vol. 2, no. 5, p. 512.

    Article  PubMed  Google Scholar 

  35. Pokusaev, B.G., Karlov, S.P., Vyazmin, A.V., and Nekrasov, D.A., Peculiarities of unsteady mass transfer in flat channels with liquid and gel, Theor. Found. Chem. Eng., 2015, vol. 49, no. 6, p. 798.

    Article  CAS  Google Scholar 

  36. Pokusaev, B.G., Karlov, S.P., Vyazmin, A.V., and Nekrasov, D.A., Diffusion phenomena in gels, Chem. Eng. Trans., 2015, vol. 43, p. 1681.

    Google Scholar 

  37. Pokusaev, B.G., Karlov, S.P., Vyazmin, A.V., and Nekrasov, D.A., Laws the formations and diffusion properties of silica and agarose gels, Theor. Found. Chem. Eng., 2018, vol. 52, no. 2, p. 222.

    Article  CAS  Google Scholar 

  38. Hu, X.Y. and Adams, N.A., A multi-phase SPH method for macroscopic and mesoscopic flows, J. Comp. Phys., 2006, vol. 213, p. 844.

    Article  Google Scholar 

  39. Yang, X. and Kong, S., A smoothed particle hydrodynamics method for evaporating multiphase flows, Phys. Rev. E, 2017, vol. 96, p. 033309.

    Article  PubMed  Google Scholar 

  40. Pokusaev, B., Vyazmin, A., Zakharov, N., Karlov, S., Nekrasov, D., Reznik, V., and Kramtsov, D., The effect of bioresorbable additives and micro-bioobjects on gel formation, stabilization and thermophysical properties, Therm. Sci., 2019, vol. 23, no. 2B, p. 1297. https://doi.org/10.2298/TSCI181207350P

    Article  Google Scholar 

  41. Polyanin, A.D., Sorokin, V.G., and Vyazmin, A.V., Reaction-diffusion models with delay: some properties, equations, problems, and solutions, Theor. Found. Chem. Eng., 2018, vol. 52, no. 3, p. 334.

    Article  CAS  Google Scholar 

  42. Khramtsov, D.P., Vyazmin, A.V., Pokusaev, B.G., Karlov, S.P., and Nekrasov, D.A., Numerical simulation of slug flow mass transfer in the pipe with granular layer, Chem. Eng. Trans., 2016, vol. 52, p. 1033.

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 15-19-00177).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. G. Pokusaev or A. V. Vyazmin.

Additional information

Special issue: “Two-phase flows in microchannels: hydrodynamics, heat and mass transfer, chemical reactions”. Edited by R.Sh. Abiev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokusaev, B.G., Nekrasov, D.A., Zakharov, N.S. et al. Unsteady Heat and Mass Transfer in Structured Media and Gel. Theor Found Chem Eng 54, 91–103 (2020). https://doi.org/10.1134/S0040579520010200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520010200

Keywords:

Navigation