Skip to main content
Log in

Chemical Process Design Taking into Account Joint Chance Constraints

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A method for solving the problems of chemical process design taking into account the incompleteness and inaccuracy of the initial information presented in the form of one-stage optimization problems with joint chance constraints is proposed. Joint chance constraints guarantee the required probability level of performance, unlike individual chance constraints, which provide only an estimate of the level of performance. However, the calculation of joint chance constraints is much more complicated than that of individual chance constraints. This work proposes a method for solving the problems of chemical process design with allowance for joint chance constraints, which eliminates the operation of the direct calculation of constraints. The method involves converting a stochastic programming problem into a sequence of deterministic nonlinear programming problems and can significantly reduce the time it takes to solve the problem. The effectiveness of the proposed approach is illustrated by model examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Henrion, R. and Moller, A., Optimization of a continuous distillation process under random inflow rate, Comput. Math. Appl., 2003, vol. 45, p. 247.

    Article  Google Scholar 

  2. Ostrovsky, G.M., Lapteva, T.V., Ziyatdinov, N.N., and Silvestrova, A.S., Design of chemical engineering systems with chance constraints, Theor. Found. Chem. Eng., 2017, vol. 51, no. 6, p. 961. https://doi.org/10.1134/S0040579517060136

    Article  CAS  Google Scholar 

  3. Goel, V. and Grossmann, I.E., A class of stochastic programs with decision dependent uncertainty, Math. Prog., 2006, vol. 108, nos. 2–3, p. 335.

    Article  Google Scholar 

  4. Ben-Tal, A., Ghaoui, L.E., and Nemirovski, A., Robust Optimization, Princeton Series in Applied Mathematics, Princeton, N.J.: Princeton Univ. Press, 2009.

  5. Pflug, G.C. and Pichler, A., Multistage Stochastic Optimization, New York: Springer, 2014.

    Book  Google Scholar 

  6. Calfa, B.A., Grossmann, I.E., Agarwal, A., Bury, S.J., and Wassick, J.M., Data-driven individual and joint chance-constrained optimization via kernel smoothing, Comput. Chem. Eng., 2015, vol. 78, p. 51.

    Article  CAS  Google Scholar 

  7. Ostrovskii, G.M., Ziyatdinov, N.N., Lapteva, T.V., and Pervukhin, I.D., Flexibility analysis of chemical technology systems, Theor. Found. Chem. Eng., 2007, vol. 41, no. 3, p. 235. https://doi.org/10.1134/S0040579507030025

    Article  CAS  Google Scholar 

  8. Finger, M., Le Bras, R., Gomes, C.P., and Selman, B., Solutions for hard and soft constraints using optimized probabilistic satisfiability, Theory and Applications of Satisfiability Testing – SAT 2013. Lecture Notes in Computer Science, Järvisalo, M. and Van Gelder, A., Eds., Berlin: Springer-Verlag, 2013.

  9. Powell, W.B., Approximate Dynamic Programming: Solving the Curses of Dimensionality, Wiley Series in Probability and Statistics, Hoboken, N.J.: Wiley, 2011.

  10. Grossmann, I.E., Apap, R.M., Calfa, B.A., Garcia-Herreros, P., and Zhang, Q., Recent advances in mathematical programming techniques for the optimization of process systems under uncertainty, Comput. Chem. Eng., 2016, vol. 91, pp. 3–14. https://doi.org/10.1016/j.compchemeng.2016.03.002

    Article  CAS  Google Scholar 

  11. Schwarm, A.T. and Nikolaou, M., Chance-constrained model predictive control, AIChE J., 1999, vol. 45, no. 8, p. 1743.

    Article  CAS  Google Scholar 

  12. Charnes, A., Cooper, W.W., and Symonds, G.H., Cost horizons and certainty equivalents: An approach to stochastic programming of heating oil, Manage. Sci., 1958, vol. 4, p. 235.

    Article  Google Scholar 

  13. Prékopa, A., Stochastic Programming, New York: Springer, 1995.

    Book  Google Scholar 

  14. Zhuangzhi, L. and Zukui, L., Optimal robust optimization approximation for chance constrained optimization problem, Comput. Chem. Eng., 2015, vol. 74, p. 89.

    Article  Google Scholar 

  15. Jagannathan, R., Chance-constrained programming with joint constraints, Oper. Res., 1974, vol. 22, no. 2, p. 358.

    Article  Google Scholar 

  16. van Ackooij, W. and Sagastizábal, C., Constrained bundle methods for upper inexact oracles with application to joint chance constrained energy problems, SIAM J. Optim., 2014, vol. 2, no. 24, p. 733.

    Article  Google Scholar 

  17. Javier, O., Xavier, M., Mohamed, G., and Yongdong, L., Optimal Design and Placement of Piezoelectric Actuators using Genetic Algorithm: Application to Switched Reluctance Machine Noise Reduction, INTECH, 2011.

    Google Scholar 

  18. Bernardo, F.P., Performance of cubature formulae in probabilistic model analysis and optimization, J. Comput. Appl. Math., 2015, vol. 280, p. 110.

    Article  Google Scholar 

  19. Klöppel, M., Geletu, A., Hoffmann, A., and Li, P., Using sparse-grid methods to improve computation efficiency in solving dynamic nonlinear chance-constrained optimization problems, Ind. Eng. Chem. Res., 2011, vol. 50, p. 5693.

    Article  Google Scholar 

  20. Acevedo, J. and Pistikopoulos, E.N., Stochastic optimization based algorithms for process synthesis under uncertainty, Comput. Chem. Eng., 1998, vol. 22, p. 647.

    Article  CAS  Google Scholar 

  21. Knopov, P.S. and Norkin, V.I., On convergence conditions for the method of empirical averages in stochastic programming, Kibern. Sist. Anal., 2018, vol. 54, no. 1, p. 51.

    Google Scholar 

  22. Calafiore, G.C. and Campi, M.C., The scenario approach to robust control design, IEEE Trans. Autom. Control, 2006, vol. 51, p. 742.

    Article  Google Scholar 

  23. Nemirovski, A. and Shapiro, A., Scenario approximations of chance constraints, Probabilistic and Randomized Methods for Design under Uncertainty, Calafiore, G. and Dabbene, F, Eds., London: Springer-Verlag, 2006, p. 3.

    Google Scholar 

  24. Robert, C.P. and Casella, G., Monte Carlo integration, Introducing Monte Carlo Methods with R, Springer Series in Use R!, New York: Springer-Verlag, 2010, ch. 3, p. 61.

    Book  Google Scholar 

  25. Heitsch, H., A note on scenario reduction for two-stage stochastic programs, Oper. Res. Lett., 2007, vol. 35, no. 6, p. 731.

    Article  Google Scholar 

  26. Pennanen, T. and Koivu, M., Epi-convergent discretizations of stochastic programs via integration quadratures, Numer. Math., 2005, vol. 100, no. 1, p. 141. https://doi.org/10.1007/s00211-004-0571-4

    Article  Google Scholar 

  27. Mehrotra, S. and Papp, D., Generating moment matching scenarios using optimization techniques, SIAM J. Optim., 2013, vol. 23, no. 2, p. 963.

    Article  Google Scholar 

  28. Dempster, M.A., Medova, E.A., and Yong, Y.S., Comparison of sampling methods for dynamic stochastic programming, Stochastic Optimization Methods in Finance and Energy, New York: Springer, 2011.

    Google Scholar 

  29. Löhndorf, N., An empirical analysis of scenario generation methods for stochastic optimization, Eur. J. Oper. Res., 2016, vol. 255, p. 121.

    Article  Google Scholar 

  30. Ivanov, S.V. and Kibzun, A.I., Sample average approximation in the two-stage stochastic linear programming problem with quantile criterion, Proc. Steklov Inst. Math., 2018, vol. 303, no. 1, p. 115.

    Article  Google Scholar 

  31. Bidhandi, H.M. and Patrick, J., Accelerated sample average approximation method for two-stage stochastic programming with binary first-stage variables, Appl. Math. Modell., 2017, vol. 41, p. 582.

    Article  Google Scholar 

  32. Xu, H., Caramanis, C., and Mannor, S., Optimization under probabilistic envelope constraints, Oper. Res., 2012, vol. 60, no. 3, p. 682.

    Article  Google Scholar 

  33. Bertsimas, D. and Sim, M., The price of robustness, Oper. Res., 2004, vol. 52, p. 35.

    Article  Google Scholar 

  34. Hong, L.J., Yang, Y., and Zhang, L., Sequential convex approximations to joint chance con-strained programs: A Monte Carlo approach, Oper. Res., 2011, vol. 59, p. 617.

    Article  Google Scholar 

  35. Bertsimas, D., Gupta, V., and Kallus, N., Data-driven robust optimization, Cornell University Library. https://arxiv.org/abs/1401.0212. Accessed July 10, 2019.

  36. Chen, W., Sim, M., Sun, J., and Teo, C.P., From CVaR to uncertainty set: Implications in joint chance-constrained optimization, Oper. Res., 2010, vol. 58, no. 2, p. 470.

    Article  Google Scholar 

  37. Li, Z., Ding, R., and Floudas, C.A., A comparative theoretical and computational study on robust counterpart optimization: I. Robust linear and robust mixed integer linear optimization, Ind. Eng. Chem. Res., 2011, vol. 50, p. 10567.

    Article  CAS  Google Scholar 

  38. Li, Z. and Floudas, C.A., A comparative theoretical and computational study on robust counterpart optimization: III. Improving the quality of robust solutions, Ind. Eng. Chem. Res., 2014, vol. 53, p. 13112.

    Article  CAS  Google Scholar 

  39. Hu, Z., Hong, L.J., and So, A.M., Ambiguous probabilistic programs. http://www.optimization-online.org/ DB_FILE/ 2013/09/ 4039.pdf. Accessed July 10, 2019.

  40. Ostrovsky, G.M., Ziyatdinov, N.N., Lapteva, T.V., and Zaitsev, I.V., Two-stage optimization problem with chance constraints, Chem. Eng. Sci., 2011, vol. 66, p. 3815. https://doi.org/10.1016/j.CP.2011.05.001

    Article  CAS  Google Scholar 

  41. Ostrovsky, G.M., Ziyatdinov, N.N., and Lapteva, T.V., Optimal design of chemical processes with chance constraints, Comput. Chem. Eng., 2013, vol. 59, p. 74. https://doi.org/10.1016/j.compchemeng.2013.05.029

    Article  CAS  Google Scholar 

  42. Baker, K. and Toomey, B., Efficient relaxations for joint chance constrained AC optimal power flow, Electr. Power Syst. Res., 2017, no. 148, p. 230.

  43. Ostrovsky, G.M., Ziyatdinov, N.N., and Lapteva, T.V., One-stage optimization problem with chance constraints, Chem. Eng. Sci., 2010, vol. 65, p. 2373. https://doi.org/10.1016/j.CP.2009.09.072

    Article  CAS  Google Scholar 

  44. Ostrovsky, G.M., Ziyatdinov, N.N., and Lapteva, T.V., Optimization problem with normally distributed uncertain parameters, AIChE J., 2013, vol. 59, no. 7, p. 2471. https://doi.org/10.1002/aic.14044

    Article  CAS  Google Scholar 

  45. Ostrovsky, G.M., Lapteva, T.V., and Ziyatdinov, N.N., Optimal design of chemical processes under uncertainty, Theor. Found. Chem. Eng., 2014, vol. 48, no. 5, pp. 583–593. https://doi.org/10.1134/S0040579514050212

    Article  CAS  Google Scholar 

  46. Gill, P.E., Murray, W., and Wright, M.H., Practical Optimization, London: Academic, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Lapteva.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapteva, T.V., Ziyatdinov, N.N. & Emel’yanov, I.I. Chemical Process Design Taking into Account Joint Chance Constraints. Theor Found Chem Eng 54, 145–156 (2020). https://doi.org/10.1134/S0040579520010133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520010133

Keywords:

Navigation