Skip to main content
Log in

Desublimation of UF6 in Vertically Finned Tanks

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The developed and software-implemented simplified three-dimensional mathematical model of the unsteady-state process of UF6 desublimation into immersible vertical tanks with vertical finning is described. The study of regularities in the UF6 desublimation process is performed by numerical modeling. The results of calculations on the average capacity of vertically finned tanks with a volume of 1.0–4.0 m3 at varied collector pressure, cooling agent temperature, and tank geometry are presented. It is demonstrated that an increase in the number of fins in a varied heat and mass transfer regime appreciably improves the average capacity of vertically finned tanks and reduces the time of their filling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Orlov, A.A., Tsimbalyuk, A.F., and Malyugin, R.V., Desublimation for purification and transporting UF6: Process description and modeling, Sep. Purif. Rev., 2017, vol. 46, no. 1, p. 81.

    Article  CAS  Google Scholar 

  2. Vil’nina, A.V., Diadik, V.F., Baidali, S.A., and Liventsov, S.N., Experimental study of the effect of the cooling cycle duration on desublimation, Izv. Tomsk.Politekh. Univ., 2009, vol. 315, no. 2, p. 91.

    Google Scholar 

  3. Belozerov, B.P., Rusakov, I.Yu., Andreev, G.G., Zhiganov, A.N., and Kobzar’, Yu.F., Analysis of a process and equipment for the desublimation of uranium hexafluoride and other volatile fluorides, Tsvetn. Met., 2012, no. 1, p. 58.

  4. Raev, V.V., Saprygin, A.V., Tsedilkin, A.P., and Novokshonov, K.V., Determining the thermal conductivity of the solid phase of uranium hexafluoride, Fundam. Probl. Sovrem. Materialoved., 2011, vol. 8, no. 4, p. 125.

    Google Scholar 

  5. Vil’nina, A.V. and Liventsov, S.N., An adaptive algorithm for controlling a uranium hexafluoride desublimation unit, Izv. Tomsk.Politekh. Univ., 2008, vol. 312, no. 5, p. 133.

    Google Scholar 

  6. Gubanov, S.M., Krainov, A.Yu., and Mazur, R.L., Theoretical and experimental modeling of the cooling of uranium hexafluoride vapor desublimation tanks, Theor. Found. Chem. Eng., 2016, vol. 50, no. 5, p. 766.

    Article  CAS  Google Scholar 

  7. Gubanov, S.M., Krainov, A.Yu., Mazur, R.L., and Durnovtsev, M.I., Theoretical modeling of cooling of containers for the desublimation of hydrogen fluoride vapors, Theor. Found. Chem. Eng., 2017, vol. 51, no. 3, p. 352.

    Article  CAS  Google Scholar 

  8. Edwards, C.R. and Oliver, A.J., Uranium processing: A review of current methods and technology, JOM, 2000, vol. 52, no. 9, pp. 12–20. https://doi.org/10.1007/s11837-000-0181-2

    Article  CAS  Google Scholar 

  9. Morel, B. and Duperret, B., Uranium and fluorine cycle in the nuclear industry, J. Fluorine Chem., 2009, vol. 130, p. 7.

    Article  CAS  Google Scholar 

  10. Smolkin, P.A., Buinovskii, A.S., Lazarchuk, V.V., Matveev, A.A., and Sofronov, V.L., Mathematical model of desublimation process of volatile metal fluorides, Izv. Tomsk.Politekh. Univ., 2007, vol. 310, no. 3, p. 69.

    Google Scholar 

  11. Smolkin, P.A., Buinovskii, A.S., Lazarchuk, V.V., Matveev, A.A., Sofronov, V.L., and Brendakov, V.L., Mathematical model of determining heat condition in desublimation process of volatile metal fluorides, Izv. Tomsk.Politekh. Univ., 2007, vol. 310, no. 3, p. 77.

    Google Scholar 

  12. Orlov, A.A., Tsimbalyuk, A.F., Malyugin, R.V., and Glazunov, A.A., Dynamics of UF6 desublimation with the influence of tank geometry for various coolant temperature, MATEC Web Conf., 2016, vol. 72, article no. 01079.

  13. Orlov, A.A., Tsimbalyuk, A.F., Malyugin, R.V., Leontieva, D.A., and Kotelnikova, A.A., Effect of tank geometry on its average performance, AIP Conf. Proc., 2018, vol. 1938, article no. 020009.

    Article  Google Scholar 

  14. Byun, D.Y., Baek, S.W., and Kim, M.Y., Investigation of radiative heat transfer in complex geometries using blocked-off, multiblock, and embedded boundary treatments, Numer. Heat Transfer, Part A, 2003, vol. 43, p. 807.

    Article  Google Scholar 

  15. Chai, J.C. and Moder, J.P., Spatial-multiblock procedure heat transfer, Numer. Heat Transfer, Part B, 1997, vol. 31, p. 277.

    Article  CAS  Google Scholar 

  16. Orlov, A.A., Tsimbalyuk, A.F., and Malyugin, R.V., Mathematical modeling of process of obtaining the solid uranium hexafluoride, Key Eng. Mater., 2016, vol. 683, p. 533.

    Article  Google Scholar 

  17. Consalvi, J.I., Porterie, B., and Loraund, J.C., A blocked-off-region strategy to compute fire-spread scenarios involving internal flammable targets, Numer. Heat Transfer, Part B, 2005, vol. 47, p. 419.

    Article  CAS  Google Scholar 

  18. Godunov, S.K., Zabrodin, A.V., Ivanov, M.Ya., and Kraiko, A.N., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki (Numerical Solution of the Multidimensional Problems of Fluid Dynamics), Moscow: Nauka, 1976.

  19. Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Series in Computational Methods in Mechanics and Thermal Sciences, New York: Hemisphere, 1980.

  20. Hu, M.-H., Wu, J.-S., and Chen, Y.-S., Development of a parallelized 2D/2D-axisymmetric Navier–Stokes equation solver for all-speed gas flows, Comput. Fluids, 2011, vol. 45, no. 1, p. 241.

    Article  Google Scholar 

  21. Corcione, M., Cianfrini, M., and Quintino, A., Enhanced natural convection heat transfer of nanofluids in enclosures with two adjacent walls heated and the two opposite walls cooled, Int. J. Heat Mass Transfer, 2015, vol. 88, p. 902.

    Article  CAS  Google Scholar 

  22. Mamourian, M., Milani, ShirvanK., Ellahi, R., and Rahimi, A.B., Optimization of mixed convection heat transfer with entropy generation in a wavy surface square lid-driven cavity by means of Taguchi approach, Int. J. Heat Mass Transfer, 2016, vol. 102, p. 544.

    Article  CAS  Google Scholar 

  23. Esfahani, J.A., Akbarzadeh, M., Rashidi, S., Rosen, M.A., and Ellahi, R., Influences of wavy wall and nanoparticles on entropy generation over heat exchanger plat, Int. J. Heat Mass Transfer, 2017, vol. 109, p. 1162.

    Article  CAS  Google Scholar 

  24. Ciofalo, M., Arini, A., and Liberto, M.D., On the influence of gravitational and centrifugal buoyancy on laminar flow and heat transfer in curved pipes and coils, Int. J. Heat Mass Transfer, 2014, vol. 82, p. 123.

    Article  Google Scholar 

  25. Mazhukin, V.I., Shapranov, A.V., Perezhigin, V.E., Koroleva, O.N., and Mazhukin, A.V., Kinetic melting and crystallization stages of strongly superheated and supercooled metals, Math. Models Comput. Simul., 2017, vol. 9, no. 4, p. 448.

    Article  Google Scholar 

  26. Mazhukin, V.I., Shapranov, A.V., Samokhin, A.A., and Ivochkin, A.Yu., Modeling of explosive boiling of a thin film during homogeneous subnanosecond heating, Math. Models Comput. Simul., 2014, vol. 6, no. 5, p. 542.

    Article  Google Scholar 

  27. Isaev, S.A., Schelchkov, A.V., Leontiev, A.I., Gortyshov, YuF., Baranov, P.A., and Popov, I.A., Vortex heat transfer enhancement in the narrow plane-parallel channel with the oval-trench dimple of fixed depth and spot area, Int. J. Heat Mass Transfer, 2017, vol. 109, p. 40.

    Article  Google Scholar 

  28. Breslavskii, P.V. and Mazhukin, V.I., Dynamic adaptation method in gasdynamic simulations with nonlinear heat conduction, Comput. Math. Math. Phys., 2008, vol. 48, no. 11, p. 2102.

    Article  Google Scholar 

  29. Mazhukin, V.I., Samokhin, A.A., Demin, M.M., and Shapranov, A.V., Explosive boiling of metals upon irradiation by a nanosecond laser pulse, Quantum Electron., 2014, vol. 44, no. 4, p. 283.

    Article  Google Scholar 

  30. Sivukhin, V.D., Obshchii kurs fiziki. Optika (A General Course in Physics: Optics), Moscow: Nauka, 1980.

  31. Kofanov, A.V. and Liseikin, V.D., Grid construction for discretely defined configuration, Comput. Math. Math. Phys., 2013, vol. 53, no. 6, p. 938.

    Article  Google Scholar 

  32. Kofanov, A.V., Liseikin, V.D., and Rychkov, A.D., Application of the spherical metric tensor to grid adaptation and the solution of applied problems, Comput. Math. Math. Phys., 2012, vol. 52, no. 4, p. 653.

    Article  Google Scholar 

  33. Katz, J.J. and Rabinowitch, E., The Chemistry of Uranium, Part I: The Element, Its Binary and Related Compounds, New York: McGraw-Hill, 1961.

    Google Scholar 

  34. Orlov, A.A., Tsimbalyuk, A.F., and Malyugin, R.V., Certificate of the State Registration of a Computer Program no. 2016616566, 2016.

  35. Grigoras, C.G., Muntianu, G., and Gavrila, L., Mathematical modelling of CaCl2 aqueous solutions thermophysical properties, Sci. Study Res.: Chem. Chem. Eng., Biotechnol., Food Ind. (Univ. Bacau), 2016, vol. 17, no. 4, p. 417.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Malyugin.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, A.A., Tsimbalyuk, A.F. & Malyugin, R.V. Desublimation of UF6 in Vertically Finned Tanks. Theor Found Chem Eng 54, 178–186 (2020). https://doi.org/10.1134/S0040579520010194

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520010194

Keywords:

Navigation