Skip to main content
Log in

Electrochemical Hydrogen Storage Properties of Graphene Coating Formed by Electrophoretic Deposition

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, electrochemical hydrogen storage properties of graphene coatings were investigated. X-ray diffraction, Raman spectroscopy, field emission scanning electron microscopy, and galvanostatic charge/discharge measurements were used to characterize the materials properties. Graphene oxide was prepared using a modified Hummers method. A graphene coating was fabricated by electrophoretic deposition. Results showed that a graphene-coated copper electrode, as a low-cost and low-weight electrode, has a good charge/discharge capacity that makes it a promising candidate for electrochemical hydrogen storage applications. The highest discharge capacity obtained for a coated electrode was 45 mA h g–1, while the discharge capacity of a bare copper electrode was only 2 mA h g–1. A high capacity of the graphene coating is due to defects of the graphene structure such as wrinkles, crumples, etc., and oxygen-functional groups attached to graphene during syntheses process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Amirante, R., Cassone, E., Distaso, E., and Tamburrano, P., Energy Convers. Manage., 2017, vol. 132, pp. 372–387.

    Article  Google Scholar 

  2. Abdalla, A.M., Hossain, S., Nisfindy, O.B., Azad, A.T., et al., Energy Convers. Manage., 2018, vol. 165, pp. 602–627.

    Article  Google Scholar 

  3. Kaur, M. and Pal, K., Int. J. Hydrogen Energy, 2016, vol. 41, no. 47, pp. 21861–21869.

    Article  Google Scholar 

  4. Zhang, Y.H., Jia, Z.C., Yuan, Z.M., Yang, T., et al., J. Iron Steel Res. Int., 2015, vol. 22, no. 9, pp. 757–770.

    Article  Google Scholar 

  5. Eftekhari, A. and Fang, B., Int. J. Hydrogen Energy, 2017, vol. 42, no. 40, pp. 25143–25165.

    Article  Google Scholar 

  6. Yu, Y., Zhao, N., Shi, C., He, C., et al., Int. J. Hydrogen Energy, 2012, vol. 37, no. 7, pp. 5762–5768.

    Article  Google Scholar 

  7. Wang, Y., Deng, W., Liu, X., and Wang, X., Int. J. Hydrogen Energy, 2009, vol. 34, no. 3, pp. 1437–1443.

    Article  Google Scholar 

  8. Shiraz, H.G. and Shiraz, M.G., Int. J. Hydrogen Energy, 2017, vol. 42, no. 16, pp. 11528–11533.

    Article  Google Scholar 

  9. Guo, G.F., Huang, H., Xue, F.H., Liu, C.J., et al., Surf. Coat. Technol., 2013, vol. 228, suppl. 1, pp. S120–S125.

    Article  Google Scholar 

  10. Feng, H., Wei, Y., Shao, C., Lai, Y., et al., Int. J. Hydrogen Energy, 2007, vol. 32, no. 9, pp. 1294–1298.

    Article  Google Scholar 

  11. Wu, M.S., Hsu, H.L., Chiu, H.H., and Lin, Y.P., Int. J. Hydrogen Energy, 2010, vol. 35, no. 17, pp. 8993–9001.

    Article  Google Scholar 

  12. Bordbar, M., Alimohammadi, T., Khoshnevisan, B., Khodadadi, B., et al., Int. J. Hydrogen Energy, 2015, vol. 40, no. 31, pp. 9613–9620.

    Article  Google Scholar 

  13. Mohammadi, M., Khoshnevisan, B., and Varshoy, Sh., Int. J. Hydrogen Energy, 2016, vol. 41, no. 24, pp. 10311–10315.

    Article  Google Scholar 

  14. Shiraz, H.G. and Tavakoli, O., Renewable Sustainable Energy Rev., 2017, vol. 74, pp. 104–109.

    Article  Google Scholar 

  15. Rajaura, R.S., Srivastava, S., Sharma, V., Sharma, P.K., et al., Int. J. Hydrogen Energy, 2016, vol. 41, no. 22, pp. 9454–9461.

    Article  Google Scholar 

  16. Esfahani, S.L., Rouhani, S., and Ranjbar, Z., Surf. Interfaces, 2017, vol. 9, pp. 218–227.

    Article  Google Scholar 

  17. Akhavan, O., Carbon, 2010, vol. 48, no. 2, pp. 509–519.

    Article  Google Scholar 

  18. Pei, S. and Cheng, H.M., Carbon, 2012, vol. 50, no. 9, pp. 3210–3228.

    Article  Google Scholar 

  19. Choi, M.H., Min, Y.J., Gwak, G.H., Paek, S.M., et al., J. Alloy Compd., 2014, vol. 610, pp. 231–235.

    Article  Google Scholar 

  20. Tuinstra, F. and Koenig, J.L., J. Chem. Phys., 1970, vol. 53, no. 3, pp. 1126–1130.

    Article  Google Scholar 

  21. Reich, S. and Thomsen, C., Philos. Trans. R. Soc., A, 2004, vol. 362, no. 1824, pp. 2271–2288.

  22. Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., et al., Phys. Rev. Lett., 2006, vol. 97, no. 18, p. 187401.

    Article  Google Scholar 

  23. Qu, D., J. Power Sources, 2008, vol. 179, no. 1, pp. 310–316.

    Article  Google Scholar 

  24. McCann, E., Phys. Rev. B, 2006, vol. 74, no. 16, p. 161403.

    Article  Google Scholar 

  25. Akbarzadeh, R. and Dehghani, H., J. Solid State Electrochem., 2018, vol. 22, no. 2, pp. 395–405.

    Article  Google Scholar 

  26. Min, Y.J., Lee, W.J., Gwak, G.H., Paek, S.M., et al., Bull. Korean Chem. Soc., 2015, vol. 36, pp. 2627–2631.

    Article  Google Scholar 

  27. Chen, Y., Wang, Q., Zhu, Ch., Gao, P., et al., J. Mater. Chem., 2012, vol. 22, pp. 5924–5927.

    Article  Google Scholar 

  28. Bleda-Martínez, M.J., Pérez, J.M., Linares-Solano, A., Morallón, E., et al., Carbon, 2008, vol. 46, pp. 1053–1059.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghorbani.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reza Ghorbani, Sahand Behrangi Electrochemical Hydrogen Storage Properties of Graphene Coating Formed by Electrophoretic Deposition. Surf. Engin. Appl.Electrochem. 56, 22–27 (2020). https://doi.org/10.3103/S1068375520010056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375520010056

Keywords:

Navigation