Skip to main content
Log in

Influence of Plasma Electrolytic Polishing Conditions on Surface Roughness of Steel

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Anodic polishing of St45 medium carbon steel (0.45 wt % C) and 12Cr18Ni10Ti austenitic stainless steel in aqueous electrolytes based on ammonium chloride or ammonium sulfate is studied under conditions of natural or force convection. Surface roughness, weight loss of the samples and the current resulted from polishing are measured. A possibility of plasma electrolytic polishing using a setup for the anodic thermal chemical treatment of compounds with a longitudinal electrolyte flow is shown. Polishing regimes are found to decrease the initial surface roughness of the steels from Ra = 1.0 to 0.19–0.22 μm in 5 minutes at a sample weight loss 0.5–0.7 mg/s. The minimal surface roughness is obtained using a 3% solution of ammonium chloride at a flow rate of 0.8 L/min, voltage of 300 V, and electrolyte temperature of 80°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Mirzoev, R.A. and Davydov, A.D., Anodnye protsessy elektrokhimicheskoi i khimicheskoi obrabotki metallov (Anode Processes of Electrochemical and Chemical Metal Processing), St. Petersburg: S.-Peterb. Gos. Tekh. Univ., 2013.

  2. Sin’kevich, Yu.V., Sheleg, V.K., Yankovskii, I.N., and Belyaev, G.Ya., Elektroimpul’snoe polirovanie splavov na osnove zheleza, khroma i nikelya (Electropulse Polishing of Alloys Based on Iron, Chromium, and Nickel), Minsk: Bel. Nats. Tekh. Univ., 2014.

  3. Parfenov, E.V., Nev’yantseva, R.R., Gorbatkov, S.A., and Erokhin, A.L., Elektrolitno-plazmennaya obrabotka: modelirovanie, diagnostika, upravlenie: monografiya (Electrolyte-Plasma Treatment: Design, Diagnostics, and Control. Monograph), Moscow: Mashinostroenie, 2014.

  4. Vana, D., Podhorský, Š., Hurajt, M., and Hanzen, V., Int. J. Multidiscip. Educ. Res., 2013, no. 2, pp. 788–792.

  5. Novoselov, M.V., Shilling, N.Sh., Rudavin, A.A., Radkevich, M.M., et al., Vestn. Perm. Nats. Issled. Politekh. Univ., Mashinostr., Materialoved., 2018, vol. 20, no. 1, pp. 94–102.

  6. Beck, U., Lange, R., and Neumann, H.-G., Adv. Mater. Res., 2007, vols. 15–17, pp. 141–146.

    Google Scholar 

  7. Cornelsen, M., Seitz, H., and Deitsch, C., Metals 2018, vol. 8, no. 1, p. 12.

    Article  Google Scholar 

  8. Wang, J., Suo, L., Guan, L., and Fu, Y., Adv. Mater. Res., 2012, vols. 472–475, pp. 350–353.

    Article  Google Scholar 

  9. Plotnikov, N.V., Smyslov, A.M., and Tamindarov, D.R., Vestn. Ufimsk. Gos. Aviats. Tekh. Univ., 2013, vol. 17, no. 4, pp. 90–95.

    Google Scholar 

  10. Kulikov, I.S., Vashchenko, S.V., and Kamenev, A.Ya., Elektrolitno-plazmennaya obrabotka materialov (Electrolytic-Plasma Processing of Materials), Minsk: Belorusskaya Nauka, 2010.

  11. Nestler, K., Böttger-Hiller, F., Adamitzki, W., Glowa, G., et al., Procedia CIRP, 2016, vol. 42, pp. 503–507.

    Article  Google Scholar 

  12. Sin’kevich, Yu.V., Nauka Tekh., 2016, vol. 15, no. 5, pp. 404–414.

    Google Scholar 

  13. Mukaeva, V.R., Gorbatikov, M.V., Farrakhov, R.G., Parfenov, E.V., et al., Vestn. Ufimsk. Gos. Aviats. Tekh. Univ., 2017, vol. 21, no. 3, pp. 32–39.

    Google Scholar 

  14. Parfenov, E.V., Farrakhov, R.G., Mukaeva, V.R., Gusarov, A.V., et al., Surf. Coat. Technol., 2016, vol. 307, pp. 1329–1340.

    Article  Google Scholar 

  15. Ushomirskaya, L.A. and Novikov, V.I., Metalloobrabotka, 2008, no. 1, pp. 22–24.

  16. Kusmanov, S.A., Dyakov, I.G., Belkin, P.N., Gracheva, L.A., and Belkin, V.S., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2015, vol. 9, no. 1, pp. 98–104.

    Article  Google Scholar 

  17. Ganchar, V.I., Zgardan, I.M., and Dikusar, A.I., Elektron. Obrab. Mater., 1994, no. 4, pp. 69–77.

  18. Sin’kevich, Yu.V., Sheleg, V.K., and Yankovskii, I.N., Vestn. Polotsk. Gos. Univ., Ser. B: Prom-st’, Prikl. Nauki, 2008, no. 8, pp. 66–72.

  19. Cornelsen, M., Deutsch, C., and Seitz, H., Metals, 2018, vol. 8, no. 5, pp. 330–339.

    Article  Google Scholar 

  20. Mukaeva, V.R. and Parfenov, E.V., Vestn. Ufimsk. Gos. Aviats. Tekh. Univ., 2012, vol. 16, no. 6, pp. 67–73.

    Google Scholar 

  21. Gamburg, Yu.D., Davydov, A.D., and Kharkats, Yu.I., Russ. J. Electrochem., 1994, vol. 30, no. 4, pp. 422–443.

    Google Scholar 

  22. Ivanova, N.P., Sin’kevich, Yu.V., Sheleg, V.K., and Yankovskii, I.N., Nauka Tekh., 2013, no. 1, pp. 24–30.

Download references

Funding

This work was financially supported by the Russian Science Foundation (Contract no. 18-79-10094) to the Kostroma State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Belkin.

Ethics declarations

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkin, P.N., Silkin, S.A., D’yakov, I.G. et al. Influence of Plasma Electrolytic Polishing Conditions on Surface Roughness of Steel. Surf. Engin. Appl.Electrochem. 56, 55–62 (2020). https://doi.org/10.3103/S1068375520010032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375520010032

Keywords:

Navigation