Skip to main content
Log in

Vertical Propagation of Acoustic Gravity Waves from the Lower Atmosphere during a Solar Eclipse

  • CHEMICAL PHYSICS OF ATMOSPHERIC PHENOMENA
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

This paper presents the results of the analysis of a numerical experiment on the generation of acoustic gravity waves (AGWs) in the lower atmosphere and their propagation into the upper atmosphere. The observed variations in atmospheric pressure during the passage of a solar eclipse on March 20, 2015, over Kaliningrad (54° N, 20° E) are considered the be a wave source. The calculation results showed that the passage of a solar eclipse is accompanied in the lower atmosphere by an increase in wave activity in the AGW range with periods of ~4–20 min. In the upper atmosphere, at altitudes of ~200 km, disturbances are formed due to the dissipation of AGWs coming from the lower atmosphere; these disturbances propagate with characteristic periods of ~50 min. The propagation direction of these disturbances was opposite to the propagation direction of the solar eclipse region along the Earth’s surface. The results of the numerical experiment are in qualitative agreement with the results of observations of ionospheric disturbances during the solar eclipse on March 20, 2015.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. I. Grigor’ev, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 42 (1), 3 (1999).

    Google Scholar 

  2. S. P. Kshevetskii, Nonlin. Proc. Geophys. 8, 37 (2001).

    Article  Google Scholar 

  3. M. P. Hickey, G. Schubert, and R. L. Walterscheid, J. Geophys. Res. Space Phys. A 106, 21543 (2001).

    Article  Google Scholar 

  4. D. C. Fritts and M. J. Alexander, Rev. Geophys. 41, 1003 (2003).

    Article  Google Scholar 

  5. R. R. Akhmedov and V. E. Kunitsyn, Geomagn. Aeron. 44, 95 (2004).

    Google Scholar 

  6. Y. A. Kurdyaeva, S. Kshevetskii, N. M. Gavrilov, et al., Pure Appl. Geophys. 175, 3639 (2018).

    Article  Google Scholar 

  7. Y. Kurdyaeva, S. Kulichkov, S. Kshevetskii, et al., Ann. Geophys. 37, 447 (2019).

    Article  Google Scholar 

  8. S. P. Kshevetskii, Comput. Math. Math. Phys. 41, 273 (2001).

    Google Scholar 

  9. S. P. Kshevetskii, Comput. Math. Math. Phys. 41, 1777 (2001).

    Google Scholar 

  10. N. M. Gavrilov and S. P. Kshevetskii, Earth Planet. Space 66, 88 (2014).

    Article  Google Scholar 

  11. I. V. Karpov and S. P. Kshevetskii, J. Atmos. Sol.-Terr. Phys. 164, 89 (2017).

    Article  Google Scholar 

  12. S. P. Kshevetskii and S. N. Kulichkov, Izv. Atmos. Ocean. Phys. 51, 42 (2015).

    Article  Google Scholar 

  13. I. V. Karpov and S. P. Kshevetskii, Geomagn. Aeron. 54, 513 (2014).

    Article  Google Scholar 

  14. N. S. Petrukhin, E. N. Pelinovsky, and E. K. Batsyna, JETP Lett. 93, 564 (2011).

    Article  CAS  Google Scholar 

  15. Y. V. Drobzheva and V. M. Krasnov, J. Atmos. Sol.-Terr. Phys. 68, 578 (2006).

    Article  Google Scholar 

  16. O. P. Borchevkina, I. V. Karpov, and A. I. Karpov, Russ. J. Phys. Chem. B 11, 1024 (2017).

    Article  CAS  Google Scholar 

  17. J. M. Picone, A. E. Hedin, D. P. Drob, et al., J. Geophys. Res. Space Phys. A 107, 1468 (2002).

    Google Scholar 

  18. N. M. Astaf’eva, Phys. Usp. 39, 1085 (1996).

    Article  Google Scholar 

  19. M. P. Hickey, R. L. Walterscheid, and G. Schubert, J. Geophys. Res. Space Phys. A 116, 12326 (2011).

    Google Scholar 

  20. I. V. Karpov, S. P. Kshevetskii, O. P. Borchevkina, A. V. Radievsky, and A. I. Karpov, Russ. J. Phys. Chem. B 10, 127 (2016).

    Article  CAS  Google Scholar 

  21. S. L. Vadas and H.-L. Liu, J. Geophys. Res. Space Phys. A 114, 10310 (2009).

    Article  Google Scholar 

  22. L. F. Chernogor, Geomagn. Aeron. 52, 768 (2012).

    Article  CAS  Google Scholar 

  23. S. V. Panasenko, Y. Otsuka, M. van de Kamp, et al., J. Atmos. Sol.-Terr. Phys. 191, 105051 (2019).

    Article  Google Scholar 

  24. F. S. Bessarab, Yu. N. Koren’kov, V. V. Klimenko, and N. S. Natsvalyan, Geomagn. Aeron. 42, 644 (2002).

    Google Scholar 

  25. G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003).

    Article  Google Scholar 

  26. G. V. Golubkov, M. I. Manzhelii, and I. V. Karpov, Russ. J. Phys. Chem. B 5, 406 (2011).

    Article  CAS  Google Scholar 

  27. G. V. Golubkov, M. G. Golubkov, and M. I. Manzhelii, Russ. J. Phys. Chem. B 8, 103 (2014).

    Article  CAS  Google Scholar 

  28. G. V. Golubkov, M. I. Manzhelii, A. A. Berlin, and A. A. Lushnikov, Russ. J. Phys. Chem. B 10, 77 (2016).

    Article  CAS  Google Scholar 

  29. V. V. Kuverova, S. O. Adamson, A. A. Berlin, et al., Adv. Space Res. 64, 1876 (2019).

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out in the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (project 0082-2019-0017, registration no. AAAA-A19-119010990034-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Golubkov.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyakov, Y.A., Kurdyaeva, Y.A., Borchevkina, O.P. et al. Vertical Propagation of Acoustic Gravity Waves from the Lower Atmosphere during a Solar Eclipse. Russ. J. Phys. Chem. B 14, 355–361 (2020). https://doi.org/10.1134/S1990793120020207

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120020207

Keywords:

Navigation