Skip to main content
Log in

The Liquid–Vapor Phase Transition in a Copper–Calcium System

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

It is established that 82% of the vapor can condense into the liquid phase when calcium is evaporated from an alloy with copper at low pressures of 0.7–1.33 kPa under nonequilibrium conditions. Based on values of the vapor pressure of calcium and copper determined using the boiling point approach, a complete diagram of state is constructed that includes the condensed and vapor phases at atmospheric pressure and in vacuums of 0.7 and 1.33 kPa. The temperatures of boiling and the composition of the condensate are calculated from the boundaries of the melt–vapor phase transitions. The condensate is represented by calcium with a copper content no greater than 3.95 × 10–2 wt % and a boiling point 77–129°С higher than the melting point of Ca. It is assumed that the condensate remains in the molten state. The fundamental possibility of a liquid–vapor–liquid process that can be applied to distillation for the production of calcium is thus proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. A. Doronin, Calcium (Gosatomizdat, Moscow, 1962) [in Russian].

    Google Scholar 

  2. S. S. Bogoslovskii, A. N. Krestovnikov, and N. L. Lysenko, Izv. Akad. Nauk SSSR, Met., No. 5, 51 (1969).

  3. A. Ram Sharma, J. Phys. Chem. 74, 3896 (1970).

    Article  Google Scholar 

  4. B. P. Burylev, Thermodynamic and Thermochemical Constants (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  5. B. Djamshidi, M. Notin, J. Cl. Gachon, and J. Hertz, Scr. Metall. Mater. 14, 493 (1980).

    Article  CAS  Google Scholar 

  6. A. S. Bykov, B. M. Lepinskikh, and A. A. Vostryakov, Zh. Fiz. Khim. 57, 1000 (1983).

    CAS  Google Scholar 

  7. V. N. Volodin, S. G. Vasilets, M. A. Terlikbaev, and M. T. Shadaev, Kompl. Ispol’z. Min. Syr’ya, No. 2, 38 (1989).

    Google Scholar 

  8. V. N. Volodin, M. A. Terlikbaev, and S. G. Vasilets, Kompl. Ispol’z. Min. Syr’ya, No. 9, 24 (1989).

    Google Scholar 

  9. N. V. Kishkoparov, G. K. Moiseev, and I. V. Frishberg, Available from VINITI No. 2092 (Sverdlovsk, 1984).

  10. A. S. Bykov and A. A. Vostryakov, Thermodynamic and Molecular Kinetic Studies of Metal and Slag Melts (Sverdlovsk, 1985), p. 44 [in Russian].

    Google Scholar 

  11. E. Schurmann and R. Schmid, Arch. Eisenhüttenwes. 46, 773 (1975).

    Article  Google Scholar 

  12. V. M. Glazov, V. B. Lazarev, and V. V. Zharov, Phase Diagrams of Simple Substances (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  13. Yong Nian Dai and Bing Yang, Vacuum Metallurgy of Non-Ferrous Metals (Metallurg. Ind. Press, Beijing, 2000), Vol. 3.

    Google Scholar 

  14. Y. K. Rao, Metall. Trans. A 14, 308 (1983).

    Article  Google Scholar 

  15. V. P. Malyshev, A. M. Turdukozhaeva, E. A. Ospanov, and B. Sarkenov, Evaporation and Boiling of Simple Substances (Nauchnyi Mir, Moscow, 2010) [in Russian].

    Google Scholar 

  16. D. I. Chakrabarti and D. E. Laughlin, Bull. Alloy Phase Diagrams 5, 570 (1984).

    Article  Google Scholar 

  17. Diagram of States of Binary Metallic Systems, The Handbook, Ed. by N. M. Lyakishev (Mashinostroenie, Moscow, 1996), Vol. 1 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Zh. Tuleushev.

Additional information

Translated by M. Aladina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volodin, V.N., Tuleushev, Y.Z. The Liquid–Vapor Phase Transition in a Copper–Calcium System. Russ. J. Phys. Chem. 94, 1300–1305 (2020). https://doi.org/10.1134/S0036024420070304

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420070304

Keywords:

Navigation