Skip to main content
Log in

Intermolecular Interactions in 1,6-Diaminohexane + Water Mixtures at 293.15 to 333.15 K

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The density (ρ) and viscosity (η) of the mixtures of 1,6-diaminohexane (DAH) + water binary system were determined over the whole composition range at p = 101 kPa from 293.15 to 333.15 K. The measured density and viscosity values decrease with the increase of temperature. In addition, the viscosity of the binary system shows a maximum value along with the molar fraction of DAH. According to the experimental data, excess molar volume (VE), apparent molar volume Vϕ, viscosity deviation (Δη), and excess Gibbs free energy (ΔG*E) of the activation of viscous flow were obtained and correlated by the well-known Redlich–Kister type polynomial equation by using the least square method and regression parameters were calculated. It was found that all of the VE values are negative while \(\Delta \eta \) and ΔG*E values are positive. The intermolecular interactions between DAH and water were characterized by the averaged non-covalent interaction index (aNCI) and thermal fluctuation index (TFI) method. The obtained results proved that N···H–O and O···H–N hydrogen bonds which lightly affected by thermal motion, and some of the flexible van der Waals interactions are the reason for the specific variation of the viscosity and excess properties of the studied binary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. X. Yue, L. Zhao, L. Ma, et al., J. Mol. Liq. 263, 40 (2018).

    Article  CAS  Google Scholar 

  2. F. Comelli, R. Francesconi, A. Bigi, et al., J. Chem. Eng. Data 51, 665 (2006).

    Article  CAS  Google Scholar 

  3. M. Rani and M. Sanjeev, Thermochim. Acta 559, 98 (2013).

    Article  CAS  Google Scholar 

  4. F. Comelli, S. Ottani, R. Francesconi, et al., J. Chem. Eng. Data 4, 995 (2003).

    Article  Google Scholar 

  5. E. R. Johnson, Sh. Keinan, P. Mori-Sanchez, et al., J. Am. Chem. Soc. 132, 6498 (2010).

    Article  CAS  Google Scholar 

  6. P. Wu, R. Chaudret, X. Hu, et al., J. Chem. Theory Compu. 9, 2226 (2013).

    Article  CAS  Google Scholar 

  7. H. Li, J. Zhang, Y. Dou, et al., J. Chem. Thermodyn. 120, 184 (2018).

    Article  CAS  Google Scholar 

  8. B. Hess, C. Kutzner, D. van der Spoel, et al., J. Chem. Theory Comput. 4, 435 (2008).

    Article  CAS  Google Scholar 

  9. A. J. Lopes Jesus, J. A. S. Almeida, A. A. C. C. Pais, et al., Mol. Phys. 112, 173 (2014).

    Article  CAS  Google Scholar 

  10. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, D. Jeffry, et al., J. Chem. Phys. 79, 926 (1983).

    Article  CAS  Google Scholar 

  11. T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012).

    Article  Google Scholar 

  12. R. Guixa-González, I. Rodriguez-Espigares, J. M. Ramírez-Anguita, et al., Bioinformatics 30, 1478 (2014).

    Article  Google Scholar 

  13. W. Gildseth, A. Habenschuss, and F. H. Spedding, J. Chem. Eng. Data 17, 402 (1972).

    Article  CAS  Google Scholar 

  14. Y. Qiao, D. I. Zhiguo, M. A. Youguang, et al., Chin. J. Chem. Eng. 18, 446 (2010).

    Article  CAS  Google Scholar 

  15. T. Zheng, J. Fang, Q. Xie, and Z. Wu, J. Chem. Thermodyn. 130, 243 (2019).

    Article  CAS  Google Scholar 

  16. W. Zhang, Z. Q. Yang, and J. Lu, J. Chem. Eng. Data 60, 1688 (2015).

    Article  CAS  Google Scholar 

  17. D. M. Bajić, S. P. Šerbanović, E. M. Živković, et al., J. Mol. Liq. 197, 1 (2014).

    Article  Google Scholar 

  18. L. Li, J. Zhang, Q. Li, et al., Thermochim Acta 590, 91 (2014).

    Article  CAS  Google Scholar 

  19. G. A. Iglesiassilva, A. Guzmánlópez, G. Pérezdurán, et al., J. Chem. Eng. Data 61, 2682 (2017).

    Article  Google Scholar 

  20. C. Zhang, G. Li, L. Yue, Y. Guo, W. Fang, J. Chem. Eng. Data 60, 2541 (2015).

    Article  CAS  Google Scholar 

  21. M. A. Aissa, G. R. Ivanis, I. R. Radovic, and M. L. Kijevcanin, Energy Fuels 31, 7110 (2017).

    Article  CAS  Google Scholar 

  22. A. Muhammad, M. I. A. Mutalib, T. Murugesan, et al., J. Chem. Eng. Data 53, 2217 (2008).

    Article  CAS  Google Scholar 

  23. X. H. Fan, Y. P. Chen, and C. S. Su, J. Chem. Eng. Data 61, 920 (2016).

    Article  CAS  Google Scholar 

  24. X. Lu, H. Xie, Q. Lei, and W. Fang, J. Chem. Thermodyn. 136, 44 (2019).

    Article  CAS  Google Scholar 

  25. O. Redlich and A. T. Kister, Ind. Eng. Chem. 40, 345 (1948).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoji Liu.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huanxin Li, Song, C., Xu, L. et al. Intermolecular Interactions in 1,6-Diaminohexane + Water Mixtures at 293.15 to 333.15 K. Russ. J. Phys. Chem. 94, 1356–1362 (2020). https://doi.org/10.1134/S0036024420070195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420070195

Keywords:

Navigation