Skip to main content
Log in

Design of New Materials Based on Functionalization of Cu-BTC for Adsorption and Separation of CH4 and CO2: GCMC and MD Simulations Study

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Metal-organic framework (MOF) is a strong candidate for gas storage and gas separation, which can be modified by various functional groups. In this study, we performed Grand Canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations to investigate the effect of F, Cl, Br, CHO, NO2, ethyl (Et), methyl (Me), and SH functional groups on the methane and carbon dioxide adsorption and CH4/CO2 separation properties in copper benzene-1,3,5-tricarboxylate (Cu-BTC). Adsorption isotherm of CO2 and CH4 indicate that Cu-BTC has a slight adsorption preference for CO2 over the methane. CH4 adsorption on the NH2, Et, and Me derivatives of Cu-BTC is slightly more than the parent Cu-BTC. Furthermore, our results showed that the MOF selectivity changed with the composition, functional group and pressure. Therefore, we will able choose specific condition for special application. MD results reveal that CO2 molecules more strongly interact with MOF sorption sites than CH4 molecules and also NH2–Cu-BTC system has the highest interaction energy. Furthermore, the mean-square displacement (MSD) results show that the motion of the gas molecules is diffusive and they can move more easily within the pores of Cu-BTC and its derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. Cavenati, C. A. Grande, and A. E. Rodrigues, J. Chem. Eng. Data 49, 1095 (2004).

    Article  CAS  Google Scholar 

  2. E. L. First, M. M. Hasan, and C. A. Floudas, AIChE J. 60, 1767 (2014).

    Article  CAS  Google Scholar 

  3. F. Gholampour and S. Yeganegi, Chem. Eng. Sci. 117, 426 (2014).

    Article  CAS  Google Scholar 

  4. X. Zhou, W. Huang, J. Miao, Q. Xia, Z. Zhang, H. Wang, and Z. Li, Chem. Eng. J. 266, 339 (2015).

    Article  CAS  Google Scholar 

  5. K. Peikert, F. Hoffmann, and M. Fro, Chem. Commun. 3, 11196 (2012). doi 10. 1039/c2cc36220a

  6. R. B. Getman, Y.-S. Bae, C. E. Wilmer, and R. Q. Snurr, Chem. Rev. 112, 703 (2011).

    Article  Google Scholar 

  7. S. Couck, J. F. M. Denayer, G. V Baron, T. Rémy, J. Gascon, and F. Kapteijn, J. Am. Chem. Soc. 131, 6326 (2009).

    Article  CAS  Google Scholar 

  8. M. Zaboli and H. Raissi, Mol. Simul. 43, 675 (2017).

    Article  CAS  Google Scholar 

  9. M. Shahabi and H. Raissi, J. Incl. Phenom. Macrocycl. Chem. (n.d.). https://doi.org/10.1007/s10847-016-0664-6

  10. J. J. Gutiérrez-Sevillano, A. Caro-Pérez, D. Dubbeldam, and S. Calero, Phys. Chem. Chem. Phys. 13, 20453 (2011).

    Article  Google Scholar 

  11. M. H. Kowsari and S. Naderlou, Microporous Mesoporous Mater. 240, 39 (2017).

    Article  CAS  Google Scholar 

  12. J. Zhang, M. B. Clennell, K. Liu, D. N. Dewhurst, M. Pervukhina, and N. Sherwood, Fuel 177, 53 (2016). https://doi.org/10.1016/j.fuel.2016.02.075

    Article  CAS  Google Scholar 

  13. S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams, Science (Washington, DC, U.S.) 283, 1148 (1999).

    Article  CAS  Google Scholar 

  14. S. L. Mayo, B. D. Olafson, and W. A. Goddard, J. Phys. Chem. 94, 8897 (1990).

    Article  CAS  Google Scholar 

  15. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).

    Article  CAS  Google Scholar 

  16. S. Nosé, Mol. Phys. 52, 255 (1984).

    Article  Google Scholar 

  17. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

    Article  CAS  Google Scholar 

  18. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14, 33 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Hashemzadeh.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan Hashemzadeh, Raissi, H. & Farzad, F. Design of New Materials Based on Functionalization of Cu-BTC for Adsorption and Separation of CH4 and CO2: GCMC and MD Simulations Study. Russ. J. Phys. Chem. 94, 1415–1421 (2020). https://doi.org/10.1134/S0036024420070134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420070134

Keywords:

Navigation