Skip to main content
Log in

A CAM-B3LYP DFT Investigation of Atenolol Adsorption on the Surface of Boron Nitride and Carbon Nanotubes and Effect of Surface Carboxylic Groups

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The adsorption behavior of atenolol molecule over the pristine carbon nanotube and boron nitride nanotube as well as functionalized carbon nanotube was performed employing the B3LYP and CAM-B3LYP methods with 6-311G(d, p) basis set in two phases (gas and water solution). We used natural bond orbital, non-covalent interactions and the quantum theory of atoms in molecules to investigate the hydrogen bonds, interaction energies and charge transfers between the atenolol drug and nanosystems. In all cases, the process of intermolecular interaction between atenolol and nanosystems is exothermic showing that the optimized complexes are stable. The hydrogen-bonding interactions between drug and CNT–(COOH)3 play an important role for the different kinds of adsorption. In addition, data showed that there is a large charge donation and back-donation for atenolol adsorption on the surface of CNT–(COOH)3. Results indicated that although in the case of pristine carbon nanotube, the adsorption is weak, functionalization of carbon nanotube with –COOH groups can effectively modify the surface of nanotubes towards atenolol molecules adsorption and improve their solubility in water solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. Kuster, A. C. Alder, B. I. Escher, K. Duis, K. Fenner, J. Garric, T. H. Hutchinson, D. R. Lapen, A. Pery, and J. Rombke, Integr. Environ. Assess. Manage. 6, 514 (2010).

    Google Scholar 

  2. B. Egan, J. Flack, M. Patel, and S. Lombera, J. Clin. Hypertens. 20, 1464 (2018).

    Article  Google Scholar 

  3. N. Bertrand and J.-C. Leroux, J. Control. Release 161, 152 (2012).

    Article  CAS  Google Scholar 

  4. C. Chen, H. Zhang, L. Hou, J. Shi, L. Wang, C. Zhang, M. Zhang, H. Zhang, X. Shi, and H. Li, J. Pharm. Pharm. Sci. 16, 40 (2013).

    Article  CAS  Google Scholar 

  5. M. Hesabi and R. Behjatmanesh-Ardakani, Comput. Theor. Chem. 1117, 61 (2017).

    Article  CAS  Google Scholar 

  6. H. Xu, Q. Wang, G. Fan, and X. Chu, Theor. Chem. Acc. 7, 104 (2018).

    Article  Google Scholar 

  7. O. A. Oyetade, V. O. Nyamori, B. S. Martincigh, and S. B. Jonnalagadda, RSC Adv. 6, 2731 (2016).

  8. K. Z. Milowska, J. Phys. Chem. C 119, 26734 (2015).

    Article  CAS  Google Scholar 

  9. M. Mananghaya, M. A. Promentilla, K. Aviso, and R. Tan, J. Mol. Liq. 215, 780 (2016).

    Article  CAS  Google Scholar 

  10. R. Kobayashi and R. D. Amos, Chem. Phys. Lett. 420, 106 (2006).

    Article  CAS  Google Scholar 

  11. T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393, 51 (2004).

    Article  CAS  Google Scholar 

  12. L. Simon and J. M. Goodman, Org. Biomol. Chem. 9, 689 (2011).

    Article  CAS  Google Scholar 

  13. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and G. Petersson, Gaussian 09, Revision B.01 (Gaussian, Inc., Wallingford, CT, 2009).

    Google Scholar 

  14. S. Dapprich, I. Komaromi, K. S. Byun, K. Morokuma, and M. J. Frisch, J. Mol. Struct. 461, 1 (1999).

    Article  Google Scholar 

  15. W. L. Yim and Z. F. Liu, Chem. Phys. Lett. 398, 297 (2004).

    Article  CAS  Google Scholar 

  16. Z. Chen, S. Nagase, A. Hirsch, R. C. Haddon, W. Thiel, and P. V. Schleyer, Angew. Chem., Int. Ed. 43, 1552 (2004).

    Article  CAS  Google Scholar 

  17. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005).

    Article  CAS  Google Scholar 

  18. S. Boys and F. Bernardi, Mol. Phys. 100, 65 (2002).

    Article  Google Scholar 

  19. F. A. I. M. Biegler-Konig, AIM 2000 1.0 (Univ. Appl. Sci., Bielefeld, 2000).

  20. W. Humphrey, A. Dalke, and K. Schulten J. Mol. Graph. 14, 33 (1996).

    Article  CAS  Google Scholar 

  21. T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012).

    Article  Google Scholar 

  22. E. D. Glendening, C. R. Landis, and F. Weinhold, J. Comput. Chem. 34, 1429 (2013).

    Article  CAS  Google Scholar 

  23. Jmol-NBO Visualization Helper. http://chemgplus.blogspot.com/2013/08/jmolnbo-visualization-helper.html.

  24. R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, J. Chem. Phys. 68, 3801 (1978).

    Article  CAS  Google Scholar 

  25. R. G. Parr and W. Yang, J. Am. Chem. Soc. 106, 4049 (1984).

    Article  CAS  Google Scholar 

  26. P. Politzer, P. Lane, J. S. Murray, and M. C. Concha, J. Mol. Model. 11, 1 (2005).

    Article  CAS  Google Scholar 

  27. S. J. Grabowski, J. Phys. Chem. A 116, 1838 (2012).

    Article  CAS  Google Scholar 

  28. I. Rozas, I. Alkorta, and J. Elguero, J. Am. Chem. Soc. 122, 11154 (2000).

    Article  CAS  Google Scholar 

  29. M. Ziolkowski, S. J. Grabowski, and J. Leszczynski, J. Phys. Chem. A 110, 6514 (2006).

    Article  CAS  Google Scholar 

  30. C. F. Matta, J. Hernandez-Trujillo, T. H. Tang, and R. F. Bader, Chem.-Eur. J. 9, 1940 (2003).

    Article  CAS  Google Scholar 

  31. A. Shahi and E. Arunan, Phys. Chem. Chem. Phys. 16, 22935 (2014).

    Article  CAS  Google Scholar 

  32. A. Varadwaj, P. R. Varadwaj, and B. Y. Jin, RSC Adv. 6, 19098 (2016).

  33. E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A. J. Cohen, and W. Yang, J. Am. Chem. Soc. 132, 6498 (2010).

    Article  CAS  Google Scholar 

  34. H. Xiao, J. Tahir-Kheli, and W. A. Goddard III, J. Phys. Chem. Lett. 2, 212 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by a grant from the Young Researchers club of Islamic Azad University and we thank for this valuable cooperation.

Author information

Authors and Affiliations

Authors

Contributions

Both authors participated in writing the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Maryam Hesabi.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maryam Hesabi, Ghasem Ghasemi A CAM-B3LYP DFT Investigation of Atenolol Adsorption on the Surface of Boron Nitride and Carbon Nanotubes and Effect of Surface Carboxylic Groups. Russ. J. Phys. Chem. 94, 1678–1693 (2020). https://doi.org/10.1134/S0036024420080117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420080117

Keywords:

Navigation