Skip to main content
Log in

Colloidal and Nanosized Catalysts in Organic Synthesis: XXIV. Study of Hydrogenation of Furan and Its Derivatives in the Presence of MgO-Supported Nickel and Cobalt Nanoparticles

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The processes of hydrogenation of furan and its derivatives (2-methylfuran, furfuryl alcohol, and furfural) in plug-flow type reactor under atmospheric hydrogen pressure at 20–220°С in the presence of supported nickel nanoparticles prepared via chemical reduction have been investigated. It has been found that nickel nanoparticles supported on magnesium oxide surface are the most reactive and stable under the considered conditions. This catalyst allows the corresponding hydrogenation products with 100% yield and complete conversion of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Scheme

Similar content being viewed by others

REFERENCES

  1. Mokhov, V.M., Popov, Yu.V., Paputina, A.N., Nebykov, D.N., and Shishkin, E.V., Russ. J. Gen. Chem., 2019, vol. 89, no. 12, p. 2333. https://doi.org/10.1134/S1070363219120016

    Article  CAS  Google Scholar 

  2. Nakagawa, Y., Tamura, M., and Tomishige, K., ACS Catal., 2013, vol. 12, no. 3, p. 2655. https://doi.org/10.1021/cs400616p

    Article  CAS  Google Scholar 

  3. Nagaraja, B.M., Siva, K.V., Shasikala, V., Padmasri, A.H., Sreedhar, B., David, R.B., and Rama, R.K.S., Catal. Commun., 2003, vol. 6, no. 4, p. 287. https://doi.org/10.1016/s1566-7367(03)00060-8

    Article  Google Scholar 

  4. Nagaraja, B.M., J. Mol. Catal. (A), 2007, vol. 265, nos. 1–2, p. 90. https://doi.org/10.1016/j.molcata.2006.09.037

    Article  CAS  Google Scholar 

  5. Stevens, J.G., Bourne, R.A., Twigg, M.V., and Poliakoff, M., Angew. Chem. Int. Ed., 2010, vol. 49, no. 47, p. 8856. https://doi.org/10.1002/anie.201005092

    Article  CAS  Google Scholar 

  6. Vetere, V., Merlo, A.B., Ruggera, J.F., and Casella, M.L., J. Br. Chem. Soc., 2010, vol. 21, no. 5, p. 914. https://doi.org/10.1590/s0103-50532010000500021

    Article  CAS  Google Scholar 

  7. Nagaraja, B.M., Siva Kumar, V., Shasikala, V., Padmasri, A.H., Sreedhar, B., David Raju, B., and Rama Rao, K.S., Catal. Commun., 2003, vol. 4, no. 6, p. 287. https://doi.org/10.1016/s1566-7367(03)00060-8

    Article  CAS  Google Scholar 

  8. Yan, K., Wu, X., An, X., and Xie, X., Chem. Eng. Commun., 2013, vol. 201, no. 4, p. 456. https://doi.org/10.1080/00986445.2013.775646

    Article  CAS  Google Scholar 

  9. Wettstein, S.G., Alonso, D.M., Gürbüz, E.I., and Dumesic, J.A., Curr. Op. Chem. Eng., 2012, vol. 1, no. 3, p. 218. https://doi.org/10.1016/j.coche.2012.04.002

    Article  CAS  Google Scholar 

  10. Geilen, F.M.A., vom Stein, T., Engendahl, B., Winterle, S., Liauw, M.A., Klankermayer, J., and Leitner, W., Angew. Chem. Int. Ed., 2011, vol. 50, no. 30, p. 6831. doi10.1002/anie.201007582

    Article  CAS  Google Scholar 

  11. Nakagawa, Y. and Tomishige, K., Catal. Surveys Asia, 2011, vol. 15, no. 2, p. 111. https://doi.org/10.1007/s10563-011-9114-z

    Article  CAS  Google Scholar 

  12. Seo, G. and Chon, H., J. Catal., 1981, vol. 67, no. 2, p. 424. https://doi.org/10.1016/0021-9517(81)90302-x

    Article  CAS  Google Scholar 

  13. Ordomsky, V.V., Schouten, J.C., van der Schaaf, J., and Nijhuis, T.A., Appl. Catal. (A), 2013, vol. 451, p. 6. https://doi.org/10.1016/j.apcata.2012.11.013

    Article  CAS  Google Scholar 

  14. Zhang, B., Zhu, Y., Ding, G., Zheng, H., and Li, Y., Gr. Chem., 2012, vol. 14, no. 12, p. 3402. https://doi.org/10.1039/c2gc36270h

    Article  CAS  Google Scholar 

  15. Khan, F.A., Vallat, A., and Süss-Fink, G., Catal. Commun., 2011, vol. 12, no. 15, p. 1428. https://doi.org/10.1016/j.catcom.2011.05.024

    Article  CAS  Google Scholar 

  16. Tike, M.A. and Mahajani, V.V., Ind. Eng. Chem. Res., 2007, vol. 46, no. 10, p. 3275. https://doi.org/10.1021/ie061137m

    Article  CAS  Google Scholar 

  17. Nakagawa, Y. and Tomishige, K., Catal. Commun., 2010, vol. 12, no. 3, p. 154. https://doi.org/10.1016/j.catcom.2010.09.003

    Article  CAS  Google Scholar 

  18. Xiu, S. and Shahbazi, A., Ren. Sust. En. Rev., 2012, vol. 16, no. 7, p. 4406. https://doi.org/10.1016/j.rser.2012.04.028

    Article  CAS  Google Scholar 

  19. Aycock, D.F., Org. Proc. Res. Dev., 2007, vol. 11, no. 1, p. 156. https://doi.org/10.1021/op060155c

    Article  CAS  Google Scholar 

  20. Koso, S., Nakagawa, Y., and Tomishige, K., J. Catal., 2011, vol. 280, no. 2, p. 221. https://doi.org/10.1016/j.jcat.2011.03.018

    Article  CAS  Google Scholar 

  21. Koso, S., Watanabe, H., Okumura, K., Nakagawa, Y., and Tomishige, K., Appl. Catal (B), 2012, vol. 111, p. 27. https://doi.org/10.1016/j.apcatb.2011.09.015

    Article  CAS  Google Scholar 

  22. Koso, S., Watanabe, H., Okumura, K., Nakagawa, Y., and Tomishige, K., J. Ph. Chem. (C), 2012, vol. 116, no. 4, p. 3079. https://doi.org/10.1021/jp2114225

    Article  CAS  Google Scholar 

  23. Chen, K., Mori, K., Watanabe, H., Nakagawa, Y., and Tomishige, K., J. Catal., 2012, vol. 294, p. 171. https://doi.org/10.1016/j.jcat.2012.07.015

    Article  CAS  Google Scholar 

  24. Amada, Y., Watanabe, H., Tamura, M., Nakagawa, Y., Okumura, K., and Tomishige, K., J. Ph. Chem. (C), 2012, vol. 116, no. 44, p. 23503. https://doi.org/10.1021/jp308527f

    Article  CAS  Google Scholar 

  25. Popov, Yu.V., Mokhov, V.M., Nebykov, D.N., Shcherbakova, K.V., and Dontsova, A.A., Russ. J. Gen. Chem., 2018, vol. 88, no. 1, p. 20. https://doi.org/10.1134/S1070363218010048

    Article  CAS  Google Scholar 

  26. Popov, Yu.V., Mokhov, V.M., Latyshova, S.E., Nebykov, D.N., Panov, A.O., and Pletneva, M.Yu., Russ. J. Gen. Chem., 2017, vol. 87, no. 10, p. 2276. https://doi.org/10.1134/S107036321710005X

    Article  CAS  Google Scholar 

  27. Smith, H.A. and Fuzek, J.F., J. Am. Chem. Soc., 1949, vol. 71, no. 2, p. 415. https://doi.org/10.1021/ja01170a013

    Article  CAS  Google Scholar 

  28. Koso, S., Ueda, N., Shinmi, Y., Okumura, K., Kizuka, T., and Tomishige, K., J. Catal., 2009, vol. 267, no. 1, p. 89. https://doi.org/10.1016/j.jcat.2009.07.010

    Article  CAS  Google Scholar 

  29. Popov, Yu.V., Mokhov, V.M., Latyshova, S.E., Nebykov, D.N., Panov, A.O., and Davydova, T.M., Russ. J. Gen. Chem., 2018, vol. 88, no. 10, p. 2035. https://doi.org/10.1134/S1070363218100018

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research (project no. 19-33-90117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Popov.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

For communication XXIII, see [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, Y.V., Mokhov, V.M., Nebykov, D.N. et al. Colloidal and Nanosized Catalysts in Organic Synthesis: XXIV. Study of Hydrogenation of Furan and Its Derivatives in the Presence of MgO-Supported Nickel and Cobalt Nanoparticles. Russ J Gen Chem 90, 931–935 (2020). https://doi.org/10.1134/S1070363220060018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220060018

Keywords:

Navigation