Skip to main content
Log in

Extraction of Uranium(VI), Thorium(IV), and Trivalent Rare Earths from Nitric Acid Solutions with {[2-(2-Diphenylphosphoryl)-4-ethylphenoxy]ethyl}diphenylphosphine Oxide

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A new extractant, {[2-(2-diphenylphosphoryl)-4-ethylphenoxy]ethyl}diphenylphosphine oxide, has been synthesized, and its solutions in 1,2-dichloroethane and a ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, have been used to extract HNO3, uranium(VI), thorium(IV), and trivalent rare earths from nitric acid solutions. The stoichiometry of the extracted complexes has been determined, and the effects of the extractant structure and HNO3 concentration in the aqueous phase on the extraction efficiency have been studied. The extraction efficiency has been found to significantly increase when ionic liquid is present in the organic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Myasoedov, B.F., Kalmykov, S.N., Kulyako, Yu.M., and Vinokurov, S.E., Geochem. Int., 2016, vol. 54, no. 13, p. 1156. https://doi.org/10.1134/S0016702916130115

    Article  CAS  Google Scholar 

  2. Alyapychev, M.Yu., Babain, V.A., and Ustynyuk, Yu.A., Russ. Chem. Rev., 2016, vol. 85, no. 9, p. 943. https://doi.org/10.1070/RCR4588

    Article  CAS  Google Scholar 

  3. Leoncini, A., Huskens, J., and Verboom, W., Chem. Soc. Rev., 2017, vol. 46, p. 7229. https://doi.org/10.1039/C7CS00574A

    Article  CAS  PubMed  Google Scholar 

  4. Rozen, A.M., Nikolotova, Z.I., and Kartasheva, N.A., Radiokhimiya, 1986, vol. 28, no. 3, p. 407.

    CAS  Google Scholar 

  5. Chmutova, M.K., Litvina, M.N., Pribylova, G.A. Ivanova, L.A., Smirnov, I.V., Shadrin, A.Yu., and Myasoedov, B.F., Radiokhimiya, 1999, vol. 41, no. 4, p. 331.

    Google Scholar 

  6. Narita, H., Yaita, T., Tamura, K., and Tachimori, S., Radiochim. Acta, 1998, vol. 81, p. 223. https://doi.org/10.1524/ract.1998.81.4.223

    Article  CAS  Google Scholar 

  7. Sasaki, Y., Sugo, Y., Suzuki, S., and Tachimori, S., Solvent Extr. Ion Exch., 2001, vol. 19, p. 91. https://doi.org/10.1081/SEI-100001376

    Article  CAS  Google Scholar 

  8. Zhui, Z.-X, Sasaki, Y., Suzuki, S., and Kimura, T., Anal. Chim. Acta, 2004, vol. 527, p. 163. https://doi.org/10.1016/j.aca.2004.09.023

    Article  CAS  Google Scholar 

  9. Sasaki, Y., Sugo, Y., Morita, K., and Nash, K.L., Solvent Extr. Ion Exch., 2015, vol. 33, p. 625. https://doi.org/10.1080/07366299.2015.1087209

    Article  CAS  Google Scholar 

  10. Campbell, E., Holfeltz, V.E., Hall, G.B., Nash, K.L., Lumetta, G.J., and Levitskaia, T.G., Solvent Extr. Ion Exch., 2018, vol. 36, p. 331. https://doi.org/10.1080/07366299.2018.1447261

    Article  CAS  Google Scholar 

  11. Ansari, S.A., Mohapatra, P.K., Leoncini, A., Ali, S.M., Singhadeb, A., Huskens, J., and Verboom, W., Dalton Trans., 2017, vol. 46, p. 11355. https://doi.org/10.1039/C7DT03831C

    Article  CAS  PubMed  Google Scholar 

  12. Turanov, A.N., Karandashev, V.K., Evseeva, N.K., Baulin, V.E., and Ushakova, A.P., Radiokhimiya, 1999, vol. 41, no. 3, p. 219.

    Google Scholar 

  13. Turanov, A.N., Karandashev, V.K., and Baulin, V.E., Solvent Extr. Ion Exch., 1999, vol. 17, p. 1423. https://doi.org/10.1080/07366299908934656

    Article  CAS  Google Scholar 

  14. Turanov, A.N., Karandashev, V.K., Baulin, V.E., Yarkevich, A.N., and Safronova, Z.V., Solvent Extr. Ion Exch., 2009, vol. 27, p. 551. https://doi.org/10.1080/07366290903044683

    Article  CAS  Google Scholar 

  15. Rozen, A.M., Nikolotova, Z.I., Kartasheva, N.A., and Yudina, K.S., Dokl. Akad. Nauk SSSR, 1975, vol. 222, no. 5, p. 1151.

    CAS  Google Scholar 

  16. Rozen, A.M. and Krupnov, B.V., Russ. Chem. Rev., 1996, vol. 65, no. 11. p. 973. https://doi.org/10.1070/RC1996v065n11ABEH000241

    Article  Google Scholar 

  17. Kabachnik, M.I., Myasoedov, B.F., Mastryukova, T.A., Polikarpov, Yu.M., Chmutova, M.K., and Nesterova, N.P., Russ. Chem. Bull., 1996, vol. 45, no. 11, p. 2484. https://doi.org/10.1007/BF01431100

    Article  Google Scholar 

  18. Tsvetkov, E.N., Evreinov, V.I., Bondarenko, N.A., and Safronova, Z.V., Russ. J. Gen. Chem., 1996, vol. 66, no. 7, p. 1054.

    Google Scholar 

  19. Demin, S.V., Zhilov, V.I., Nefedov, S.E. Baulin, V.E., and Tsivadze, A.Yu., Russ. J. Inorg. Chem., 2012, vol. 57, no. 6, p. 897. https://doi.org/10.1134/S0036023612060095

    Article  CAS  Google Scholar 

  20. Turanov, A.N., Karandashev, V.K., and Baulin, V.E., Radiokhimiya, 1998, vol. 40, no. 1, p. 36.

    Google Scholar 

  21. Koel, M., Crit. Rev. Anal. Chem., 2005, vol. 35, p. 177. https://doi.org/10.1080/10408340500304016

    Article  CAS  Google Scholar 

  22. Kolarik, Z., Solvent Extr. Ion Exch., 2013, vol. 31, p. 24. https://doi.org/10.1080/07366299.2012.700589

    Article  CAS  Google Scholar 

  23. Billard, I., Handbook on the Physics and Chemistry of Rare Earths, Bünzli, J.-C.G. and Pecharsky, V.K., Eds., 2013, vol. 43, chap. 256, p. 213. https://doi.org/10.1016/B978-0-444-59536-2.00003-9

  24. Mohapatra, P.K., Chem. Prod. Process Model., 2015, vol. 10, p. 135.

    Article  CAS  Google Scholar 

  25. Nakashima, K., Kubota, F., Maruyama, T., and Goto, M., Anal. Sci., 2003, vol. 19, p. 1097. https://doi.org/10.2116/analsci.19.1097

    Article  CAS  PubMed  Google Scholar 

  26. Turanov, A.N., Karandashev, V.K., and Baulin, V.E., Russ. J. Inorg. Chem., 2008, vol. 53, no. 6, p. 970. https://doi.org/10.1134/S0036023608060272

    Article  Google Scholar 

  27. Turanov, A.N., Karandashev, V.K., and Baulin, V.E., Radiochemistry, 2008, vol. 50, no. 3, p. 266. https://doi.org/10.1134/S1066362208030090

    Article  CAS  Google Scholar 

  28. Shimojo, K., Kurahashi, K., and Naganava, H., Dalton Trans., 2008, vol. 37, p. 5083. https://doi.org/10.1039/B810277P

    Article  Google Scholar 

  29. Turanov, A.N., Karandashev, V.K., and Baulin, V.E., Solvent Extr. Ion Exch., 2008, vol. 26, p. 77. https://doi.org/10.1080/07366290801904871

    Article  CAS  Google Scholar 

  30. Panja, S., Mohapatra, P.K., Tripathi, S.C., Gandhi, P.M., and Janardan, P., Sep. Purif. Technol., 2012, vol. 96, p. 289. https://doi.org/10.1016/j.seppur.2012.06.015

    Article  CAS  Google Scholar 

  31. Turanov, A.N., Karandashev, V.K., Baulin, D.V., Baulin, V.E., and Tsivadze, A.Yu., Russ. J. Inorg. Chem., 2019, vol. 64, no. 3, p. 407. https://doi.org/10.1134/S0036023619030203

    Article  CAS  Google Scholar 

  32. Rozen, A.M., Berkman, Z.A., Bertina, L.E., Denisov, D.A., Zarubin, A.I., Kossykh, V.G., Nikolotova, Z.I., Pisareva, S.A., and Yudina, K.S., Radiokhimiya, 1976, vol. 18, no. 4, p. 493.

    CAS  Google Scholar 

  33. Turanov, A.N., Karandashev, V.K., and Baulin, V.E., Radiochemistry, 2001, vol. 43, no. 1, p. 72. https://doi.org/10.1023/A:1012830323836

    Article  CAS  Google Scholar 

  34. Yatsimirskii, K.B., Kostromina, N.A., Sheka, Z.A., Davidenko, K., Kriss, E.E., and Ermolenko, V.I., Khimiya kompleksnykh soedinenii redkozemel’nykh metallov (Chemistry of Coordination Compounds of Rare Earths), Kiev: Naukova Dumka, 1966.

  35. Vlasov, V.S. and Rozen, A.M., Radiokhimiya, 1988, vol. 30, no. 1, p. 146.

    CAS  Google Scholar 

  36. Turanov, A.N., Karandashev, V.K., and Yarkevich, A.N., Radiochemistry, 2018, vol. 60, no. 2, p. 170. https://doi.org/10.1134/S1066362218020078

    Article  CAS  Google Scholar 

  37. Gaillard, C., Boltoeva, M., Billard, I. Georg, S., Mazan, V., Ouadi, A., Ternova, D., and Hennig, C., ChemPhysChem, 2015, vol. 16, p. 2653. https://doi.org/10.1002/cphc.201500283

    Article  CAS  PubMed  Google Scholar 

  38. Binnemans, K., Chem. Rev., 2007, vol. 107, p. 2593. https://doi.org/10.1021/cr050979c

    Article  CAS  Google Scholar 

  39. Shuvaev, S., Kotova, O., Utochnikova, V., Vaschenko, A., Puntus, L., Baulin, V., Kuzmina, N., and Tzivadze, A., Inorg. Chem. Commun., 2012, vol. 20, p. 73. https://doi.org/10.1016/j.inoche.2012.02.020

    Article  CAS  Google Scholar 

  40. Bonhote, P., Dias, A.P., Papageorgiou, N., Kalyanasundaram, K., and Grätzel, M., Inorg. Chem., 1996, vol. 35, p. 1168. https://doi.org/10.1021/ic951325x

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Sorbent-Tekhnologii Ltd. for providing a sample of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide.

Funding

This study was performed in the framework of state tasks to the Institute of Solid State Physics, Institute of Problems of Microelectronics Technology and High-Purity Materials, Frumkin Institute of Physical Chemistry and Electrochemistry, and Institute of Physiologically Active Substances (Russian Academy of Sciences) under partial financial support by the Russian Foundation for Basic Research (project no. 18-29-24069_mk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Turanov.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turanov, A.N., Karandashev, V.K., Baulin, D.V. et al. Extraction of Uranium(VI), Thorium(IV), and Trivalent Rare Earths from Nitric Acid Solutions with {[2-(2-Diphenylphosphoryl)-4-ethylphenoxy]ethyl}diphenylphosphine Oxide. Russ J Gen Chem 90, 1012–1019 (2020). https://doi.org/10.1134/S1070363220060122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220060122

Keywords:

Navigation