Skip to main content
Log in

Synthesis, Characterization, and Properties of Highly Hydrophilic Polyaniline Sulfonic Acid

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A hollow spherical highly hydrophilic polyaniline sulfonic acid catalyst has been successfully prepared by emulsion polymerization and SO3 liquid sulfonation using modified polystyrene microspheres (PS) as a template. Acid value of the solid acid catalyst is 2.516 mmol/g. Morphology, structure and thermal stability of the catalyst have been studied by XRD, SEM, TEM, FT-IR, X-ray photoelectron spectroscopy (XPS), and TGA. It has been proven that doping and sulfonation of PANI and SO3 lead to new molecule that retains the PANI matrix material. In view of close structure-activity relationship, it has been applied to the efficient synthesis of bis(indolyl)methanes (BIMs) in water-ethanol phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Oueiny, C., Berlioz, S., and Perrin, F.X., Prog. Polym. Sci., 2014, vol. 39, p. 707. https://doi.org/10.1016/j.progpolymsci.2013.08.009

  2. Wang, H., Lin, J., and Shen, Z.X., J. Sci. Adv. Mater. Devic., 2016, vol. 1, p. 225. https://doi.org/10.1016/j.jsamd.2016.08.001

    Article  Google Scholar 

  3. Shen, Y.F., Yuan, D.D., Ai, X.P., Yang, H.X., and Zhou, M., Electrochem. Commun., 2014, vol. 49, p. 5. https://doi.org/10.1016/j.elecom.2014.09.016

    Article  CAS  Google Scholar 

  4. Geethalakshmi, D., Muthukumarasamy, N., and Balasundaraprabhu, R., Mat. Sci. Semicon. Proc., 2016, vol. 51, p. 71. https://doi.org/10.1016/j.mssp.2016.05.006

    Article  CAS  Google Scholar 

  5. Lashkenari, M.S., Davodi, B., Ghorbani, M., and Eisazadeh, H., High. Perform. Polym., 2012, vol. 24, p. 345. https://doi.org/10.1177/0954008311436222

  6. Drelinkiewicz, A., Kalemba-Jaje, Z., Lalik, E., and Kosydar, R., Fuel., 2014, vol. 116, p. 760. https://doi.org/10.1016/j.fuel.2013.08.079

    Article  CAS  Google Scholar 

  7. Palaniappan, S. and Ram, M.S., Green. Chem., 2002, vol. 4, p. 53. https://doi.org/10.1039/b109891h

    Article  CAS  Google Scholar 

  8. Zięba, A., Drelinkiewicz, A., Konyushenko, E.N., and Stejskal, J., Appl. Catal. A: Gen., 2010, vol. 383, p. 169. https://doi.org/10.1016/j.apcata.2010.05.042

    Article  CAS  Google Scholar 

  9. Zięba, A., Drelinkiewicz, A., Chmielarz, P., Matachowski, L., and Stejskal, J., Appl. Catal. A: Gen., 2010, vol. 387, p. 13. https://doi.org/10.1016/j.apcata.2010.07.060

    Article  CAS  Google Scholar 

  10. Drelinkiewicz, A., Kalemba-Jaje, Z., Lalik, E., Zięba, A., Mucha, D., Konyushenko, E.N., and Stejskal, J., Appl. Catal. A: Gen., 2013, vol. 455, p. 92. https://doi.org/10.1016/j.apcata.2013.01.022

    Article  CAS  Google Scholar 

  11. Zheng, Y., Zheng, Y., Yang, S., Guo, Z., Zhang, T., Song, H., and Shao, Q., Green. Chem. Lett. Rev., 2017, vol. 10, p. 202. https://doi.org/10.1080/17518253.2017.1342001

    Article  CAS  Google Scholar 

  12. Ravi, K., Krishnakumar, B., and Swaminathan, M., Synth. React. Inoge. M., 2015, vol. 45, p. 1380. https://doi.org/10.1080/15533174.2013.862710

    Article  CAS  Google Scholar 

  13. Shirini, F., Fallah-Shojaei, A., Samavi, L., and Abedini, M., RSC. Adv., 2016, vol. 6, p. 48469. https://doi.org/10.1039/C6RA04893E

    Article  CAS  Google Scholar 

  14. Shirini, F. and Lati, M.P., J. Iran. Chem. Soc., 2017, vol. 14, p. 75. https://doi.org/10.1007/s13738-016-0959-y

    Article  CAS  Google Scholar 

  15. Feng, X., Mao, C., Yang, G., Hou, W., and Zhu, J.J., Langmuir., 2006, vol. 22, p. 4384. https://doi.org/10.1021/la053403r

    Article  CAS  PubMed  Google Scholar 

  16. Ma, G., Wen, Z., Jin, J., Lu, Y., Wu, X., Wu, M., and Chen, C., J. Mater. Chem. A, 2014, vol. 2, p. 10350. https://doi.org/10.1039/C4TA00483C

    Article  CAS  Google Scholar 

  17. Kang, E.T., Neoh, K.G., and Tan, K.L., Prog. Polym. Sci., 1998, vol. 23, p. 277. https://doi.org/10.1016/S0079-6700(97)00030-0

    Article  CAS  Google Scholar 

  18. Kim, S.G., Kim, J.W., Choi, H.J., Suh, M.S., Shin, M.J., and Jhon, M.S., Colloid. Polym. Sci., 2000, vol. 278, p. 894. https://doi.org/10.1007/s003960000360

    Article  CAS  Google Scholar 

  19. Zhu, Y., Hu, D., Wan, M.X., Jiang, L., and Wei, Y., Adv. Mater., 2007, vol. 19, p. 2092. https://doi.org/10.1002/adma.200602135

    Article  CAS  Google Scholar 

  20. Trchova, M., Stejskal, J., and Prokeš, J., Synthetic. Met., 1999, vol. 101, p. 840. https://doi.org/10.1016/S0379-6779(98)01310-1

    Article  CAS  Google Scholar 

  21. Pouget, J.P., Jozefowicz, M.E., Epstein, A.E.A., Tang, X., and MacDiarmid, A.G., Macromolecules, 1991, vol. 24, p. 779. https://doi.org/10.1021/ma00003a022

    Article  CAS  Google Scholar 

  22. Łużny, W., Śniechowski, M., and Laska, J., Synthetic. Met., 2002, vol. 126, p. 27. https://doi.org/10.1016/S0379-6779(01)00477-5

    Article  Google Scholar 

  23. Murugesan, R. and Subramanian, E., Mater. Chem. Phys., 2003, vol. 80, p. 731. https://doi.org/10.1016/S0254-0584(03)00127-5

    Article  CAS  Google Scholar 

  24. Tan, K.L., Tan, B.T.G., Kang, E.T., and Neoh, K.G., Phys. Rev. B, 1989, vol. 39, p. 8070. https://doi.org/10.1103/PhysRevB.39.8070

    Article  CAS  Google Scholar 

  25. Liu, M.J., Tzou, K., and Gregory, R.V., Synthetic. Met., 1994, vol. 63, p. 67. https://doi.org/10.1016/03796779(94)90251-8

    Article  CAS  Google Scholar 

  26. Shishkanova, T.V., Sapurina, I., Stejskal, J., Král, V., and Volf, R., Anal. Chim. Acta, 2005, vol. 553, p. 160. https://doi.org/10.1016/j.aca.2005.08.018

    Article  CAS  Google Scholar 

  27. Blinova, N.V., Stejskal, J., Trchová, M., and Prokeš, J., Polym. Int., 2008, vol. 57, p. 66. https://doi.org/10.1002/pi.2312

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Major Innovation Projects for Building First-class Universities in China’s Western Region (no. ZKZD 2017003), the National First-rate Discipline Construction Project of Ningxia (no. NXYLXK2017A04) and the National Natural Science Foundation of China (no. 21862013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanyi Liu.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Wang, G., Yuan, S. et al. Synthesis, Characterization, and Properties of Highly Hydrophilic Polyaniline Sulfonic Acid. Russ J Gen Chem 90, 1055–1061 (2020). https://doi.org/10.1134/S1070363220060195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220060195

Keywords:

Navigation