Skip to main content
Log in

New Cr, Mo, W, and Fe Metal Complexes with Potentially Heptadentate (S3N4) Tripodal Schiff Base Ligand: Synthesis, Characterization, and Antibacterial Activity

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Reactions of Cr, Mo, W, and Fe metal carbonyls with potentially heptadentate (S3N4) tripodal Schiff base ligand, (thio)3tren, have been studied. The Schiff base (thio)3tren has been prepared by condensation of thiophene-2-carboxaldehyde with tris(2-aminoethyl)amine. The Schiff base and its metal complexes have been characterized by IR, UV-Vis, 1H and 13C NMR spectra, TGA, and elemental analysis. According to the spectroscopic data, (thio)3tren is coordinated to the metal centers as a potentially heptadentate ligand. The products have been tested in vitro against the bacterial species, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Bacillus cereus by the disc diffusion and micro-broth dilution methods, and characterized by antibacterial activity higher than that of the ligand. The lowest MIC was determined for Fe complex against Bacillus cereus and the highest for Mo complex against Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Kirtley, S.W., Wilkinson, G., Gordon, F., Stone, A., and Abel, E.W., Comprehensive Organometallic Chemistry, vol. 3, Oxford: Pergamon Press, 1982, p. 783.

  2. Collman, J.P. and Hegedus, L.S., Principles and Application of Organotransition Metal Chemistry, California: University Science Book, 1980

  3. Waern, J.B. and Harding M.M., J. Organomet. Chem., 2004, vol. 689, p. 4655. https://doi.org/10.1016/j.jorganchem.2004.08.014

    Article  CAS  Google Scholar 

  4. Stohs, S.J. and Bagchi, D., Free Radic. Biol. Med., 1995, vol. 18, p. 321. https://doi.org/10.1016/0891-5849(94)00159-h

    Article  CAS  PubMed  Google Scholar 

  5. Taylor, S., Kammerer, B., and Bayer, E., Chem. Rev., 1997, vol. 97, p. 333. https://doi.org/10.1021/cr940467q

  6. Jelikić-Stankov, M., Uskoković-Markovic, S., Holclajtner-Antunovic, I., Todorovic, M., and Djurdjevic, P., J. Trace Elem. Med. Bio., 2007, vol. 21, p. 8. https://doi.org/10.1016/j.jtemb.2006.11.004

    Article  CAS  Google Scholar 

  7. Soliman, A.A. and Mohamed, G.G., Thermochim. Acta, 2004, vol. 421, p. 151. https://doi.org/10.1016/j.tca.2004.03.010

  8. Piper J.M. and Lovell, S.J., Anal. Biochem., 1981, vol. 117. p. 70. https://doi.org/10.1016/0003-2697(81)90693-x

  9. Jelikić-Stankov, M. and Veselinović, D., Analyst, 1989, vol. 114, p. 719. https://doi.org/10.1039/AN9891400719

    Article  Google Scholar 

  10. Jelikić-Stankov, M., Veselinović, D., Malesěv, D., and Radović, Z., J. Pharm. Biomed. Anal., 1989, vol. 7, p. 1565. https://doi.org/10.1016/0731-7085(89)80166-9

  11. Jelikić-Stankov, M., Malesěv, D., Veselinović, D., and Radovic, Z., Polyhedron, 1991, vol. 10, p. 455. https://doi.org/10.1016/S0277-5387(00)80211-9

    Article  Google Scholar 

  12. Wang, M., Wang, L.F., Li, Y.Z., Li, Q.X., Xu, Z.D., and Qu, D.Q., Transition Met. Chem., 2001, vol. 26, p. 307. https://doi.org/10.1023/A:10071593

    Article  CAS  Google Scholar 

  13. Yamase, T., Mol. Eng., 1993, vol. 3, p. 241. https://doi.org/10.1007/BF00999636

  14. Dhumwad, S.D., Gudasi, K.B., and Goudar, T.R., Indian J. Chem. A, 1994, vol. 33, p. 320.

    Google Scholar 

  15. Reddy, K.H., Reddy, P.S., and Babu, P.R., Transition Met. Chem., 2000, vol. 25, p. 154. https://doi.org/10.1023/A:1007027011216

    Article  CAS  Google Scholar 

  16. Tarasconi, P., Capacchi, S., Pelosi, G., Corina, M., Albertini, R., Bonati, A., Dall’Aglio, P.P., Lunghi, P., and Pinelli, S., Bioorg. Med. Chem., 2000, vol. 8, p. 157. https://doi.org/10.1016/S0968-0896(99)00260-6

  17. Charo, J., Lindencrona, J.A., Carlson, L.M., Hinkula, J., and Kiessling, R., J. Virol., 2004, vol 78, p. 11321. https://doi.org/10.1128/JVI.78.20.11321-11326.2004

  18. West, D.X., Dietrich, S.L., Thientananvanich, I., Brown, C.A., and Liberta, A.E., Transition Met. Chem., 1994, vol. 19, p. 195. https://doi.org/10.1007/BF00161888

  19. Mioc, U., Todorovic, M., Davidovic, M., Colomban, P., and Holclajtner-Antunovic I., Solid State Ionics, 2005, vol. 176, p. 3005. https://doi.org/10.1016/j.ssi.2005.09.056

  20. Das, A. Bajaj, H.C., Venkatasubramanian, K., and Bhadbhade, M.M., Polyhedron, 1995, vol. 14, p. 495. https://doi.org/10.1016/0277-5387(94)00274-I

    Article  CAS  Google Scholar 

  21. Kay, D.L. Daumann, L.J., Hanson, G.R., and Gahan, L.R., Polyhedron, 2013, vol. 64, p. 151. https://doi.org/10.1016/j.poly.2013.03.030

    Article  CAS  Google Scholar 

  22. Pillai, M.R.A., Samuel, G., Banerjee, S., Mathew, B., Sarma, H.D., and Jurisson, S., Nucl. Med. Biol., 1999, vol. 26, p. 69. https://doi.org/10.1016/s0969-8051(98)00051-1

    Article  CAS  PubMed  Google Scholar 

  23. Percy, G.C. and Thornton, J., J. Inorg. Nucl. Chem., 1973, vol. 35, p. 2319. https://doi.org/10.1016/0022-1902(73)80296-9

  24. Tweedy, B.G., Phytopathology, 1964, vol. 55, p. 910.

    Google Scholar 

  25. Parekh, J., Inamdhar, P., Nair, R., Baluja, S., and Chanda, S., J. Serb. Chem. Soc., 2005, vol. 70, p. 1161. https://doi.org/10.2298/JSC0510155P

  26. Alyea, E.C., Liu, Sh., Li, B., Xu, Z., and You, X., Acta Cryst. C, 1989, vol. 45, p. 1566. https://doi.org/10.1107/S0108270189002283

  27. Matin, S.J. and Khojasteh, R.R., Russ. J. Gen. Chem., 2015, vol. 85, p. 1763. https://doi.org/10.1134/S1070363215070312

  28. Ranjineh Khojasteh, R. and Jalali Matin, S., Russ. J. App. Chem., 2015, vol. 88, p. 921. https://doi.org/10.1134/S107042721506004X

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ranjineh Khojasteh.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmatabadi, F.D., Khojasteh, R.R., Fard, H.K. et al. New Cr, Mo, W, and Fe Metal Complexes with Potentially Heptadentate (S3N4) Tripodal Schiff Base Ligand: Synthesis, Characterization, and Antibacterial Activity. Russ J Gen Chem 90, 1317–1321 (2020). https://doi.org/10.1134/S1070363220070191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220070191

Keywords:

Navigation