Skip to main content
Log in

Elimination of DNA Multimerization Arising from Isothermal Amplification in the Presence of Bst Exo DNA Polymerase

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

In recent years, methods of isothermal amplification of nucleic acids using polymerases with a strand-displacement activity have become widespread for identification of specific nucleotide sequences. Bst exo polymerase is the most popular of these polymerases, although it is inclined to nonspecific amplification (the so-called multimerization), which leads to the accumulation of by-products constructed of tandem nucleotide repeats. In this study, we evaluated the efficiency of multimerization depending on the reaction conditions and proposed some methods for its elimination. The highest efficiency of multimerization was found in the case of Bst 2.0 polymerase in Isothermal buffer, whereas the Bst-like Gss polymerase provided the formation of multimerization products only in Isothermal buffer and at the latest stages of the reaction. The optimal method for elimination of multimerization was the use of Gss polymerase and Thermopol buffer, or Bst LF polymerase and Isothermal II buffer, or Bst 3.0 polymerase and Thermopol buffer, or Bst 3.0 polymerase in Isothermal buffer and Mn2+ ions as a cofactor. In these cases specific isothermal amplification of the target DNA may take place and provide accurate and reliable results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Fire, A. and Xu, S.Q., Proc. Natl. Acad. Sci. U. S. A., 1995, vol. 92, pp. 4641–4645.

    Article  CAS  Google Scholar 

  2. Ali, M.M., Li, F., Zhang, Zh., Zhang, K., Kang, D.K., Ankrum, J.A., Le, X.C., and Zhao, W., Chem. Soc. Rev., 2014, vol. 43, pp. 3324–3341.

    Article  CAS  Google Scholar 

  3. Mohsen, M.G. and Kool, E.T., Acc. Chem. Res., 2016, vol. 49, pp. 2540–2550.

    Article  CAS  Google Scholar 

  4. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., and Hase, T., Nucleic Acids Res., 2000, vol. 28. E63.

    Article  CAS  Google Scholar 

  5. Wong, Y.P., Othman, S., Lau, Y.L., Radu, S., and Chee, H.Y., J. Appl. Microbiol., 2018, vol. 124, pp. 626–643.

    Article  CAS  Google Scholar 

  6. Compton, J., Nature, 1991, vol. 350, pp. 91–92.

    Article  CAS  Google Scholar 

  7. Walter, N.G. and Strunk, G., Proc. Natl. Acad. Sci. U. S. A., 1994, vol. 91, pp. 7937–7941.

    Article  CAS  Google Scholar 

  8. Kim, J. and Easley, C.J., Bioanalysis, 2011, vol. 3, pp. 227–239.

    Article  CAS  Google Scholar 

  9. Zhao, Y., Chen, F., Li, Q., Wang, L., and Fan, C., Chem. Rev., 2015, vol. 115, pp. 12491–12545.

    Article  CAS  Google Scholar 

  10. Fakruddin, M., Mannan, K.S., Chowdhury, A., Mazumdar, R.M., Hossain, M.N., Islam, S., and Chowdhury, M.A., J. Pharm. Bioallied Sci., 2013, vol. 5, pp. 245–252.

    Article  Google Scholar 

  11. Deng, H. and Gao, Z., Anal. Chim. Acta, 2015, vol. 853, pp. 30–45.

    Article  CAS  Google Scholar 

  12. Mayboroda, O., Katakis, I., and O’Sullivan, C.K., Anal. Biochem., 2018, vol. 545, pp. 20–30.

    Article  CAS  Google Scholar 

  13. Giuffrida, M.C. and Spoto, G., Biosens. Bioelectron., 2017, vol. 90, pp. 174–186.

    Article  CAS  Google Scholar 

  14. Qi, H., Yue, S., Bi, S., Ding, C., and Song, W., Biosens. Bioelectron., 2018, vol. 110, pp. 207–217.

    Article  CAS  Google Scholar 

  15. Cao, H., Zhou, X., and Zeng, Y., Sens. Actuators, B, 2019, vol. 279, pp. 447–457.

    Article  CAS  Google Scholar 

  16. Treerattrakoon, K., Jiemsakul, T., Tansarawiput, C., Pinpradup, P., Iempridee, T., Luksirikul, P., Khoothiam, K., Dharakul, T., and Japrung, D., Anal. Biochem., 2019, vol. 577, pp. 89–97.

    Article  CAS  Google Scholar 

  17. Ma, Y., Zhang, B., Wang, M., Ou, Y., Wang, J., and Li, S., Biomed. Res. Int., 2016, p. 2906484.

  18. Rastgoo, N., Sadeghizadeh, M., Bambaei, B., and Hosseinkhani, S., J. Biotechnol., 2009, vol. 144, pp. 245–252.

    Article  CAS  Google Scholar 

  19. Çağlayan, M. and Bilgin, N., Appl. Biochem. Biotechnol., 2011, vol. 165, pp. 1188–200.

    Article  Google Scholar 

  20. Oscorbin, I.P., Belousova, E.A., Boyarskikh, U.A., Zakabunin, A.I., Khrapov, E.A., and Filipenko, M.L., Nucleic Acids Res., 2017, vol. 45, pp. 9595–9610.

    Article  CAS  Google Scholar 

  21. Oscorbin, I.P., Boyarskikh, U.A., and Filipenko, M.L., Mol. Biotechnol., 2015, vol. 57, pp. 947–959.

    Article  CAS  Google Scholar 

  22. Zyrina, N.V., Antipova, V.N., and Zheleznaya, L.A., FEMS Microbiol. Lett., 2014, vol. 351, pp. 1–6.

    Article  CAS  Google Scholar 

  23. Hafner, G.J., Yang, I.C., Wolter, L.C., Stafford, M.R., and Giffard, P.M., BioTechniques, 2001, vol. 30, pp. 852–867.

    Article  CAS  Google Scholar 

  24. Gu, L., Yan, W., Liu, L., Wang, S., Zhang, X., and Lyu, M., Pharmaceuticals, 2018, vol. 11, p. 35.

    Article  Google Scholar 

  25. Wang, G., Ding, X., Hu, J., Wu, W., Sun, J., and Mu, Y., Sci. Rep., 2017, vol. 7. E13928.

    Article  Google Scholar 

  26. Oscorbin, I.P., Belousova, E.A., Zakabunin, A.I., Boyarskikh, U.A., and Filipenko, M.L., BioTechniques, 2016, vol. 61, pp. 20–25.

    Article  CAS  Google Scholar 

  27. Gil’vanov, A.R., Sakhabutdinova, A.R., Chemeris, A.V., and Garafutdinov, R.R., Biomika, 2018, vol. 11, pp. 268–273.

    Google Scholar 

  28. Güixens-Gallardo, P., Hocek, M., and Perlíková, P., Bioorg. Med. Chem. Lett., 2016, vol. 26, pp. 288–291.

    Article  Google Scholar 

  29. Hays, H. and Berdis, A.J., Biochemistry, 2002, vol. 41, pp. 4771–4778.

    Article  CAS  Google Scholar 

  30. Frank, E.G. and Woodgate, R.J., Biol. Chem., 2007, vol. 282, pp. 24689–24696.

    Article  CAS  Google Scholar 

  31. Xu, W., Zhao, W., Morehouse, N., Tree, M.O., and Zhao, L., J. Mol. Biol., 2019, vol. 431, pp. 673–686.

    Article  CAS  Google Scholar 

  32. Ralec, C., Henry, E., Lemor, M., Killelea, T., and Henneke, G., Nucleic Acids Res., 2017, vol. 45, pp. 12425–12440.

    Article  CAS  Google Scholar 

  33. Vashishtha, A.K. and Konigsberg, W.H., Biochemistry, 2018, vol. 55, pp. 2661–2670.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were conducted using the equipment of the Center of Collective Use Biomika and a unique scientific system KODINK.

Funding

The work was supported by Russian State Federal budget (project no. АААА-А16-116020350032-1) and partially supported by Russian State-funded Budget project no. АААА-А17-117020210023-1 to ICBFM SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Sakhabutdinova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

In this work, humans or animals were not involved as subjects of studies.

Conflict of Interests

The authors notified about the absence of conflict of interest.

Additional information

Translated by E. Shirokova

Abbreviations: CT, circular DNA templates; DMTr, dimethoxytrityl; DTT, dithiothreitol; FAM, 5'-carboxyfluoresceine; LT, linear single-stranded DNA templates; RCA, rolling circle amplification.

Corresponding author: phone/fax: +7 (347) 235-6088; e-mail: sakhabutdinova.a.r@gmail.com.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhabutdinova, A.R., Mirsaeva, L.R., Oscorbin, I.P. et al. Elimination of DNA Multimerization Arising from Isothermal Amplification in the Presence of Bst Exo DNA Polymerase. Russ J Bioorg Chem 46, 52–59 (2020). https://doi.org/10.1134/S1068162020010082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162020010082

Keywords:

Navigation