Skip to main content
Log in

Design, Synthesis, and In Silico Evaluation of Methyl 2-(2-(5-Bromo/chloro-2-oxobenzoxazol-3(2H)-yl)-acetamido)-3-phenylpropanoate for TSPO Targeting

  • Published:
Radiochemistry Aims and scope

Abstract

The high expression of the translocator protein (TSPO) makes it an ideal target for imaging and therapy. The present study is aimed at optimizing acetamidobenzoxazolone-based TSPO ligands by structural modification to overcome the limitations of TSPO ligands of the first two generations such as nonspecificity and polymorphism. Three different TSPO proteins, 2MGY, 4RYQ, and 4UC1, in the native and mutated form were chosen. Acetamidobenzoxazolones modified with phenylalanine methyl ester (methyl 2-(2-(5-bromo/chloro-2-oxobenzooxazol-3(2H)-yl)acetamido)-3-phenylpropanoate, ABPO-Br, ABPO-Cl) through better or comparable docking scores than the known TSPO ligands such as MBMP, FEBMP, FPBMP, and PK11195 are identified as potential TSPO ligands. ABPO-Cl and ABPO-Br were synthesized using phenylalanine methyl ester as a moiety for incorporation of the desired pharmacophoric feature. All the intermediates and final compounds were purified using column chromatography and analytical HPLC (purity > 97%). The purified compounds were characterized by 1H, 13C NMR and mass spectroscopy. Drug likeliness and comparative bioactivity analysis were performed using QikProp through prediction of various properties. Both analogs follow all the five Lipinski rules and three Jogersen’s rules predicting their drug likeliness. The other important aspects related to TSPO ligands such as blood-brain barrier penetration and better contrast have been predicted through lipophilicity (QP log P = 2.76 and 2.74 for ABPO-Br and ABPO-Cl, respectively) and serum binding (QP log Khsa = −0.18 and −0.25 for ABPO-Br and ABPO-Cl, respectively). The selectivity and distribution of these TSPO ligands were confirmed by 99mTc-ABPO-Br dynamic image in New Zealand rabbit. These results have shown that the ABPO analogs have the potential to act as better ligands as compared to known acetamidobenzoxazolone derivatives and would be of interest as a promising starting point for designing compounds for TSPO targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Papadopoulos, V., Baraldi, M., Guilarte, T.R., Knudsen, T.B., Lacapère, J.J., Lindemann, P., Norenberg, M.D., Nutt, D., Weizman, A., Zhang, M.R., and Gavish, M., Trends Pharmacol. Sci., 2006, vol. 27, pp. 402–409.

    Article  CAS  Google Scholar 

  2. Li, F., Liu, J., Liu, N., Kuhn, L.A., Garavito, R.M., and Miller, S.F., Biochemistry, 2016, vol. 55, pp. 2821–2831.

    Article  CAS  Google Scholar 

  3. Li, F., Liu, J., Garavito, R.M., and Miller, S.F., Pharmacol. Res., 2015, vol. 99, pp. 404–409.

    Article  CAS  Google Scholar 

  4. Albrecht, D.S., Granziera, C., Hooker, J.M., and Loggia, M.L., ACS Chem. Neurosci., 2016, vol. 7, pp. 470–483.

    Article  CAS  Google Scholar 

  5. Kreisl, W.C., Fujita, M., Fujimura, Y., Kimura, N., Jenko, K.J., Kannan, P., Hong, J., Morse, C.L., Zoghbi, S.S., Gladding, R.L., Jacobson, S., Oh, U., Pike, V.W., and Innis, R.B., Neuroimage, 2010, vol. 49, pp. 2924–2932.

    Article  CAS  Google Scholar 

  6. Denora, N., Iacobazzi, R.M., Natile, G., and Margotta, N., Coord. Chem. Rev., 2017, vol. 341, pp. 1–18.

    Article  CAS  Google Scholar 

  7. Denora, N., Margiotta, N., Laquintana, V., Lopedota, A., Cutrignelli, A., Losacco, M., Franco, M., and Natile, G., ACS Med. Chem. Lett., 2014, vol. 5, pp. 685–689.

    Article  CAS  Google Scholar 

  8. Milite, C., Barresi, E., Pozzo, E.D., Costa, B., Viviano, M., Porta, A., Messere, A., Sbardella, G., Settimo, F.D., Novellino, E., Cosconati, S., Castellano, S., Taliani, S., and Martini, C., J. Med. Chem., 2017, vol. 60, no. 18, pp. 7897–7909. https://doi.org/10.1021/acs.jmedchem.7b01031

    Article  CAS  Google Scholar 

  9. Zhang, M.R., Kida, T., Noguchi, J., Furutsuka, K., Maeda, J., Suhara, T., and Suzuki, K., Nucl. Med. Biol., 2003, vol. 30, pp. 513–519.

    Article  CAS  Google Scholar 

  10. James, M.L., Fulton, R.R., Vercoullie, J., Henderson, D.J., Garreau, L., Chalon, S., Dollé, F., Selleri, S., Guilloteau, D., and Kassiou, M., J. Nucl. Med., 2008, vol. 49, pp. 814–822.

    Article  CAS  Google Scholar 

  11. Briard, E., Zoghbi, S.S., Imaizumi, M., Gourley, J.P., Shetty, H.U., Hong, J., Cropley, V., Fujita, M., Innis, R.B., and Pike, V.W., J. Med. Chem., 2008, vol. 51, pp. 17–30.

    Article  CAS  Google Scholar 

  12. Zhang, M.R., Kumata, K., Maeda, J., Yanamoto, K., Hatori, A., Okada, M., Higuchi, M., Obayashi, S., Suhara, T., and Suzuki, K., J. Nucl. Med., 2007, vol. 48, pp. 1853–1861.

    Article  CAS  Google Scholar 

  13. Owen, D.R., Yeo, A.J., and Gunn, R.N., J. Cereb. Blood Flow Metab., 2012, vol. 32, pp. 1–5.

    Article  CAS  Google Scholar 

  14. Fukaya, T., Kodo, T., Ishiyama, T., Kakuyama, H., Nishikawa, H., Baba, S., and Masumoto, S., Bioorg. Med. Chem., 2012, vol. 22, pp. 5568–5582.

    Article  Google Scholar 

  15. Fukaya, T., Ishiyama, T., Baba, S., and Matsumoto, S., J. Med. Chem., 2013, vol. 56, pp. 8191–8195.

    Article  CAS  Google Scholar 

  16. Tiwari, A.K., Yui, J., Fujinaga, M., Kumata, K., Shimoda, Y., Yamasaki, T., Xie, L., Hatori, A., Maeda, J., Nengaki, N., and Zhang, M.R., J. Neurochem., 2014, vol. 129, pp. 712–720.

    Article  CAS  Google Scholar 

  17. Tiwari, A.K., Fujinaga, M., Yui, J., Yamasaki, T., Xie, L., Kumata, K., Mishra, A.K., Shimoda, Y., Hatori, A., Ji, B., Ogawa, M., Kawamura, K., Wang, F., and Zhang, M.R., Org. Biomol.Chem., 2014, vol. 12, pp. 9621–9630.

    Article  CAS  Google Scholar 

  18. Tiwari, A.K., Ji, B., Fujinaga, M., Yamasaki, T., Xie, L., Luo, R., Shimoda, Y., Kumata, K., Zhang, Y., Hatori, A., Maeda, J., Higuchi, M., Wang, F., and Zhang, M.R., Theranostics, 2015, vol. 5, pp. 961–969.

    Article  CAS  Google Scholar 

  19. Tiwari, A.K., Yui, J., Zhang, Y., Fujinaga, M., Yamasaki, T., Xie, L., Shimoda, Y., Kumata, K., Hatori, A., and Zhang, M.R., RSC Adv., 2015, vol. 5, no. 123, pp. 101447–101454.

    Article  CAS  Google Scholar 

  20. Kumari, N., Chadha, N., Srivastava, P., Mishra, L.C., Bhagat, S., Mishra, A.K., and Tiwari, A.K., Chem. Biol. Drug. Des., 2017, vol. 90, no. 4, pp. 511–519.

    Article  CAS  Google Scholar 

  21. Fujinaga, M., Luo, R., Kumata, K., Zhang, Y., Hatori, A., Yamasaki, T., Xie, L., Mori, W., Kurihara, Y., Ogawa, M., Nengaki, N., Wang, F., and Zhang, M.R., J. Med. Chem., 2017, vol. 60, pp. 4047–4061.

    Article  CAS  Google Scholar 

  22. Srivastava, P., Kaul, A., Ojha, H., Kumar, P., and Tiwari, A.K., RSC Adv., 2016, vol. 6, no. 115, pp. 114491–114499.

    Article  CAS  Google Scholar 

  23. Hanaoka, H., Ohshima, Y., Suzuki, Y., Yamaguchi, A., Watanabe, S., Uehara, T., Nagamori, S., Kanai, Y., Ishioka, N.S., Tsushima, Y., Endo, K., and Arano, Y., J. Nucl. Med., 2015, vol. 56, pp. 791–797.

    Article  CAS  Google Scholar 

  24. Kang, F.N., SpringerPlus, 2013, vol. 2, article no. 353.

  25. Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug. Deliv. Rev., 1997, vol. 23, pp. 3–25.

    Article  CAS  Google Scholar 

  26. Lipinski, C.A., J. Pharmacol. Toxicol. Meth., 2000, vol. 44, pp. 235–249.

    Article  CAS  Google Scholar 

  27. Jorgensen, W.L. and Duffy, E.M., Adv. Drug Deliv. Rev., 2002, vol. 54, pp. 355–366.

    Article  CAS  Google Scholar 

  28. Jorgensen, W.L. and Duffy, E.M., Bioorg. Med. Chem. Lett., 2000, vol. 10, pp. 1155–1158.

    Article  CAS  Google Scholar 

  29. Veber, D.F., Johnson, S.R., Cheng, H.Y., Smith, B.R., Ward, K.W., and Kopple, K.D., J. Med. Chem., 2002, vol. 45, pp. 2615–2623.

    Article  CAS  Google Scholar 

  30. Irwin, J.J. and Shoichet, B.K., J. Med. Chem., 2016, vol. 59, pp. 4103–4120.

    Article  CAS  Google Scholar 

  31. Pagadala, N.S., Syed, K., and Tuszynski, J., Biophys. Rev., 2017, vol. 9, pp. 91–102.

    Article  CAS  Google Scholar 

  32. Chaput, L. and Mouawad, L., J. Cheminform., 2017, vol. 9, p. 37.

    Article  Google Scholar 

  33. Bhargavi, M., Sivan, S.K., and Potlapally, S.R., Comp. Biol. Chem., 2017, vol. 68, pp. 43–55.

    Article  CAS  Google Scholar 

  34. Kakkar, D., Tiwari, A.K., Chuttani, K., Kaul, A., Singh, H., and Mishra, A.K., Cancer Biotherapy and Radiopharmaceuticals, 2010, vol. 25(6), pp. 645–655.

    Article  CAS  Google Scholar 

  35. Guo, Y., Kalathur, R.C., Liu, Q., Kloss, B., Bruni, R., Ginter, C., Kloppmann, E., Rost, B.C., and Hendrickson, W.A., Science, 2015, vol. 347, pp. 551–555.

    Article  CAS  Google Scholar 

  36. Li, F., Liu, J., Zheng, Y., Garavito, R.M., and Miller, S.F., Science, 2015, vol. 347, pp. 555–558.

    Article  CAS  Google Scholar 

  37. Tanwar, J., Datta, A., Tiwari, A.K., Thirumal, M., Chuttani, K., and Mishra, A.K., Bioconjug Chem., 2011, vol. 22(2), pp. 244–255.

    Article  CAS  Google Scholar 

  38. Srivastava, P., Tiwari, A.K., Chadha, N., Chuttani, K., and Mishra, A.K., Eur. J. Med. Chem., 2013, vol. 65, pp. 12–20.

    Article  CAS  Google Scholar 

  39. Sinha, D., Shukla, G., Tiwari, A.K., Chaturvedi, S., Chuttani, K., Chandra, H., and Mishra, A.K., Chem. Biol. Drug. Des., 2009, vol. 74, pp. 159–164.

    Article  CAS  Google Scholar 

  40. Singh, S., Tiwari, A.K., Varshney, R., Mathur, R., Hazari, P.P., Singh, B., and Mishra, A.K., RSC Adv., 2015, vol. 5, pp. 41977–41984.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Tarun Sekhri, Director of INMAS, Dehli, Dr. A. K. Mishra, Head of the Division of Cyclotron and Radiopharmaceutical Science of INMAS, and Dr. Gaurav Mittal, Head of CCM for providing the facility to carry out the experiments. The authors are also grateful to Dr. Himanshu Ojha, Scientist, Dr. Sonia Gandhi, Scientist, Mr. Sunil Pal, Technical Officer, and Mr. Harish Rawat, INMAS, for their technical support.

Funding

The study was supported by INMAS, Delhi, under Task Project ST/15-16/INM-03.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Srivastava or Anjani Kumar Tiwari.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, P., Kumar, P. & Tiwari, A.K. Design, Synthesis, and In Silico Evaluation of Methyl 2-(2-(5-Bromo/chloro-2-oxobenzoxazol-3(2H)-yl)-acetamido)-3-phenylpropanoate for TSPO Targeting. Radiochemistry 62, 107–118 (2020). https://doi.org/10.1134/S1066362220010142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362220010142

Keywords

Navigation