Skip to main content
Log in

Laser Correlation Spectrometer for Assessing the Size and Dynamics of Changes in the Size of Structures in Biological Fluids

  • BIOPHOTONICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

To estimate the size of nanostructures in biological fluids and study the dynamics of their change, a modified method of laser correlation spectroscopy is proposed. The scheme of the hardware-software complex and the algorithm of the method are described, which allows one to achieve high accuracy in determining the size of nanoparticles, as well as to study the process of changing the size of nanoparticles in dynamics. The proposed hardware-software complex made it possible to study the dynamics of the formation of aggregates in human serum in the process of immune response. The results obtained indicate the presence of processes of rapid protein aggregation as a result of activation of the immune response. In addition, the size of the aggregates formed depends on the state of the immune system and the presence of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. Zapryanova, T. Mircheva, and S. A. Denev, Rev. Med. Vet. 164, 150 (2013).

    Google Scholar 

  2. G. P. Petrova et al., Laser Phys. 19, 1303 (2009).

    Article  ADS  Google Scholar 

  3. M. N. Kirichenko et al., Proc. SPIE 10614, 106142C (2018).

    Google Scholar 

  4. E. A. Savchenko, E. N. Velichko, and E. T. Aksenov, Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 160, 108 (2018).

    Google Scholar 

  5. A. S. Lawrie et al., Vox Sang 96, 206 (2009).

    Article  Google Scholar 

  6. L. Chaikov et al., J. Biomed. Opt. 20, 057003 (2015).

    Article  ADS  Google Scholar 

  7. J. Stetefeld, S. A. McKenna, and T. R. Patel, Biophys. Rev. 8, 409 (2016).

    Article  Google Scholar 

  8. E. Nepomnyashchaya, E. Velichko, and O. Kotov, in Proceedings of the 2019 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech) (IEEE, 2019), p. 321.

  9. E. Nepomnyashchaya, E. Aksenov, and E. Velichko, in Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Spring (PIERS) (IEEE, 2017), p. 3556.

  10. V. E. Privalov and V. G. Shemanin, Opt. Spectrosc. 82, 650 (1997).

    ADS  Google Scholar 

  11. S. I. Ivanov and A. P. Lavrov, in Proceedings of the International Symposium on Consum. Technology ISCT,2018, p. 51.

  12. O. Kotov, I. Chapalo, and A. Petrov, in Proceedings of the IEEE International Conference on Electrical Engineering and Photonics, EExPolytech,2018, p. 257.

  13. O. I. Kotov, M. A. Bisyarin, I. E. Chapalo, and A. V. Petrov, J. Opt. Soc. Am. B 35, 1990 (2018).

    Article  ADS  Google Scholar 

  14. L. Liokumovich, K. Muravyov, P. Skliarov, and N. Ushakov, Appl. Opt. 57, 7127 (2018).

    Article  ADS  Google Scholar 

  15. S. I. Ivanov, L. B. Liokumovich, and A. V. Medvedev, Lect. Notes Comput. Sci. 11118, 666 (2018).

    Article  Google Scholar 

  16. E. K. Nepomnyashchaya, J. Phys.: Conf. Ser. 1236, 012041 (2019).

    Google Scholar 

  17. V. E. Privalov and V. G. Shemanin, Opt. Spectrosc. 82, 809 (1997).

    ADS  Google Scholar 

  18. E. Nepomnyashchaya and E. Antonova, in Proceedings of the 2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech) (IEEE, 2018), p. 136.

  19. V. M. Rosenoer, M. Oratz, and M. A. Rothschild, A-lbumin: Structure, Function and Uses (Elsevier, Amsterdam, 2014).

    Google Scholar 

  20. A. O. Vonti, A. V. Il’inskii, V. M. Kapralova, and E. B. Shadrin, Tech. Phys. 63, 908 (2018).

    Article  Google Scholar 

  21. D. Sleep, Expert Opin. Drug Deliv. 12, 793 (2015).

    Article  Google Scholar 

  22. A. N. Baranov, I. M. Vlasova, and A. M. Saletskii, J. Appl. Spectrosc. 71, 222 (2004).

    Article  ADS  Google Scholar 

  23. M. Noris and G. Remuzzi, Seminars Nephrol. 33, 479 (2013).

    Article  Google Scholar 

  24. K. A. Chester and R. H. Begent, Clin. Exp. Immunol. 58, 685 (1984).

    Google Scholar 

  25. H. Esmail, R. P. Lai, M. Lesosky, K. A. Wilkinson, C. M. Graham, S. Horswell, and R. J. Wilkinson, Proc. Nat. Acad. Sci. U. S. A. 115, E964 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Bogomaz T.A. for comprehensive assistance and valuable scientific advice.

Funding

This research work was supported by the Peter the Great St. Petersburg Polytechnic University in the framework of the Program “5-100-2020.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Nepomnyashchaya.

Ethics declarations

ETHICAL COMPLIANCE

All procedures performed in a human study correspond to ethical standards of the institutional and/or national committee on research ethics and the 1964 Helsinki Declaration and its subsequent changes or comparable ethical standards.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velichko, E.N., Nepomnyashchaya, E.K., Sokolov, A.V. et al. Laser Correlation Spectrometer for Assessing the Size and Dynamics of Changes in the Size of Structures in Biological Fluids. Opt. Spectrosc. 128, 959–963 (2020). https://doi.org/10.1134/S0030400X20070255

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20070255

Keywords:

Navigation