Skip to main content
Log in

NEW NANOCOMPOSITE MATERIAL BASED ON POLYURETHANE FOAM MODIFIED WITH SILVER TRIANGULAR NANOPLATES AS A SOLID-PHASE ANALYTICAL REAGENT FOR DETERMINATION OF MERCURY(II)

  • SELF-ASSEMBLED STRUCTURES AND NANOASSEMBLIES
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A method for determination of mercury(II) using polyurethane foam modified on the surface with silver triangular nanoplates that have an average edge length of 52 nm and thickness of 4 nm is developed. The method is based on the oxidation of silver nanoplates with mercury(II). This process is accompanied by a decrease in the surface plasmon resonance band of nanoparticles which allows us to consider the nanocomposite material as a solid-phase analytical reagent for the determination of mercury(II). The influence of the reaction time and pH on the sensitivity of mercury determination is studied. The detection limit of mercury under the selected conditions is equal to 50 μg/L; the range of determined contents is 150–1000 μg/L. The increase in the volume of the analyzed solution from 5.0 to 100.0 mL via concentration reduces the detection limit of mercury to 5 μg/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. Vilela, M. C. González, and A. Escarpa, “Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review,” Anal. Chim. Acta 751, 24 (2012).

    Article  CAS  Google Scholar 

  2. A. Liang, Q. Liu, G. Wen, and Z. Jiang, “The surface-plasmon-resonance effect of nanogold/silver and its analytical applications,” Trend. Anal. Chem. 37, 32 (2012).

    Article  CAS  Google Scholar 

  3. V. V. Apyari, S. G. Dmitrienko, M. V. Gorbunova, A. A. Furletov, and Yu. A. Zolotov, “Gold and silver nanoparticles in optical molecular absorption spectroscopy,” J. Anal. Chem. 74, 21 (2019).

    Article  CAS  Google Scholar 

  4. E. A. Terent’eva, V. V. Apyari, E. V. Kochuk, S. G. Dmitrienko, and Yu. A. Zolotov, “Use of silver nanoparticles in spectrophotometry,” J. Anal. Chem. 72, 1138 (2017).

    Article  Google Scholar 

  5. K. Shrivas, N. Nirmalkar, M. K. Deb, et al., “Application of functionalized silver nanoparticles as a biochemical sensor for selective detection of lysozyme protein in milk sample,” Spectrochim. Acta, Part A 213, 127 (2019).

    Article  CAS  Google Scholar 

  6. M. Rycenga, C. M. Cobley, J. Zeng, et al., “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111, 3669 (2011).

    Article  CAS  Google Scholar 

  7. F. A. Kappi, G. Z. Tsogas, D. L. Giokas, et al., “Colorimetric and visual read-out determination of cyanuric acid exploiting the interaction between melamine and silver nanoparticles,” Microchim. Acta 181, 623 (2014).

    Article  CAS  Google Scholar 

  8. S. Yousefi and M. Saraji, “Optical aptasensor based on silver nanoparticles for the colorimetric detection of adenosine,” Spectrochim. Acta, Part A 213, 1 (2019).

    Article  CAS  Google Scholar 

  9. A. Jinnarak and S. Teerasong, “A novel colorimetric method for detection of gamma-aminobutyric acid based on silver nanoparticles,” Sens. Actuators, B 229, 315 (2016).

    Article  CAS  Google Scholar 

  10. M. Gao, L. Li, S. Lu, et al., “Silver nanoparticles for the visual detection of lomefloxacin in the presence of cysteine,” Spectrochim. Acta, Part A 205, 72 (2018).

    Article  CAS  Google Scholar 

  11. V. V. Apyari, P. A. Volkov, and S. G. Dmitrienko, “Synthesis and optical properties of polyurethane foam modified with silver nanoparticles,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 3, 015001 (2012). https://doi.org/10.1088/2043-6262/3/1/015001

    Article  CAS  Google Scholar 

  12. E. A. Terenteva, V. V. Apyari, S. G. Dmitrienko, and Yu. A. Zolotov, “Formation of plasmonic silver nanoparticles by flavonoid reduction: a comparative study and application for determination of these substances,” Spectrochim. Acta, Part A 151, 89 (2015).

    Article  CAS  Google Scholar 

  13. E. A. Terenteva, V. V. Arkhipova, V. V. Apyari, et al., “Simple and rapid method for screening of pyrophosphate using 6,6-ionene-stabilized gold and silver nanoparticles,” Sens. Actuators, B 241, 390 (2017).

    Article  CAS  Google Scholar 

  14. M. L. Personick, M. R. Langille, J. Zhang, et al., “Plasmon mediated synthesis of silver cubes with unusual twinning structures using short wavelength excitation,” Small 9, 1947 (2013).

    Article  CAS  Google Scholar 

  15. S. H. Han and J.-S. Lee, “Synthesis of length-controlled polyvalent silver nanowire-DNA conjugates for sensitive and selective detection of DNA targets,” Langmuir 28, 828 (2012).

    Article  CAS  Google Scholar 

  16. B. H. Kim and J. S. Lee, “One-pot photochemical synthesis of silver nanodisks using a conventional metal-halide lamp,” Mater. Chem. Phys. 149–150, 678 (2015).

    Article  CAS  Google Scholar 

  17. J. Zhang, M. R. Langille, and C. A. Mirkin, “Synthesis of silver nanorods by low energy excitation of spherical plasmonic seeds,” Nano Lett. 11, 2495 (2011).

    Article  CAS  Google Scholar 

  18. Q. Zhang, N. Li, J. Goebl, et al., “A systematic study of the synthesis of silver nanoplates: is citrate a ‘magic’ reagent?,” J. Am. Chem. Soc. 133, 18931 (2011).

    Article  CAS  Google Scholar 

  19. B. Tang, S. Xu, X. Hou, et al., “Shape evolution of silver nanoplates through heating and photoinduction,” ACS Appl. Mater. Interfaces 5, 646 (2013).

    Article  CAS  Google Scholar 

  20. V. V. Apyari, M. O. Gorbunova, A. V. Shevchenko, et al., “Towards highly selective detection using metal nanoparticles: a case of silver triangular nanoplates and chlorine,” Talanta 176, 406 (2018).

    Article  CAS  Google Scholar 

  21. M. O. Gorbunova, A. A. Baulina, M. S. Kulyaginova, et al., “Dynamic gas extraction of iodine in combination with a silver triangular nanoplate-modified paper strip for colorimetric determination of iodine and of iodine-interacting compounds,” Microchim. Acta 186, 188 (2019).

    Article  CAS  Google Scholar 

  22. M. O. Gorbunova, A. V. Shevchenko, V. V. Apyari, et al., “Selective determination of chloride ions using silver triangular nanoplates and dynamic gas extraction,” Sens. Actuators, B 256, 699 (2018).

    Article  CAS  Google Scholar 

  23. X. C. Jiang and A. C. Yu, “Silver nanoplates: a highly sensitive material toward inorganic anions,” Langmuir 24, 4300 (2008).

    Article  CAS  Google Scholar 

  24. X.-H. Yang, J. Ling, J. Peng, et al., “A colorimetric method for highly sensitive and accurate detection of iodide by finding the critical color in a color change process using silver triangular nanoplates,” Anal. Chim. Acta 798, 74 (2013).

    Article  CAS  Google Scholar 

  25. S. Cheng, X. Y. Hou, J. Tang, and Y. F. Long, “Silver nanoplates-based colorimetric iodide recognition and sensing using sodium thiosulfate as a sensitizer,” Anal. Chim. Acta 825, 57 (2014).

    Article  CAS  Google Scholar 

  26. G.-L. Wang, X.-Y. Zhu, Y.-M. Dong, et al., “The pH-dependent interaction of silver nanoparticles and hydrogen peroxide: a new platform for visual detection of iodide with ultra-sensitivity,” Talanta 107, 146 (2013).

    Article  CAS  Google Scholar 

  27. M. O. Gorbunova, A. A. Baulina, M. S. Kulyaginova, et al., “Determination of iodide based on dynamic gas extraction and colorimetric detection by paper modified with silver triangular nanoplates,” Microchem. J. 145, 729 (2018).

    Article  CAS  Google Scholar 

  28. T. Kiatkumjorn, P. Rattanarat, W. Siangproh, et al., “Glutathione and L-cysteine modified silver nanoplates-based colorimetricassay for a simple, fast, sensitive and selective determination of nickel,” Talanta 128, 215 (2014).

    Article  CAS  Google Scholar 

  29. S. Chaiyo, W. Siangproh, A. Apilux, and O. Chailapakul, “Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions,” Anal. Chim. Acta 866, 75 (2015).

    Article  CAS  Google Scholar 

  30. X.-D. Xia, T.-L. Wang, and X.-Y. Yuan, “Tuning plasmon absorption of unmodified silver nanoplates for sensitive and selective detection of copper ions by introduction of ascorbate,” Chin. Chem. Lett. 25, 1403 (2014).

    Article  CAS  Google Scholar 

  31. X. Y. Hou, S. Chen, J. Tang, and Y. F. Long, “Visual determination of trace cysteine based on promoted corrosion of silver triangular nanoplates by sodium thiosulfate,” Spectrochim. Acta, Part A 125, 285 (2014).

    Article  CAS  Google Scholar 

  32. Y. Li, Z. Li, Y. Gao, et al., “‘Red-to-blue’ colorimetric detection of cysteine via anti-etching of silver nanoprisms,” Nanoscale 6, 10631 (2014).

    Article  CAS  Google Scholar 

  33. A. A. Furletov, V. V. Apyari, A. V. Garshev, et al., “Silver triangular nanoplates as a colorimetric probe for sensing thiols: characterization in the interaction with structurally related thiols of different functionality,” Microchem. J. 147, 979 (2019).

    Article  CAS  Google Scholar 

  34. D. Wu, H.-F. Lu, H. Xie, et al., “Uricase-stimulated etching of silver nanoprisms for highly selective and sensitive colorimetric detection of uric acid in human serum,” Sens. Actuators, B 221, 1433 (2015).

    Article  CAS  Google Scholar 

  35. K. Tan, G. Yang, H. Chen, et al., “Facet dependent binding and etching: ultra-sensitive colorimetric visualization of blood uric acid by unmodified silver nanoprisms,” Biosens. Bioelectron. 59, 227 (2014).

    Article  CAS  Google Scholar 

  36. Y. Xia, J. Ye, K. Tan, et al., “Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism-glucoseoxidase system,” Anal. Chem. 85, 6241 (2013).

    Article  CAS  Google Scholar 

  37. G. S. Metraux and C. A. Mirkin, “Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness,” Adv. Mater. 17, 412 (2005).

    Article  CAS  Google Scholar 

  38. V. V. Apyari, S. G. Dmitrienko, and Yu. A. Zolotov, “Unusual application of common digital devices: potentialities of eye-one pro mini-spectrophotometer—a monitor calibrator for registration of surface plasmon resonance bands of silver and gold nanoparticles in solid matrices,” Sens. Actuators, B 188, 1109 (2013).

    Article  CAS  Google Scholar 

  39. J. E. Millstone, S. J. Hurst, G. S. Metraux, et al., “Colloidal gold and silver triangular nanoprisms,” Small 5, 646 (2009).

    Article  CAS  Google Scholar 

  40. A. A. Furletov, V. V. Apyari, A. V. Garshev, S. G. Dmitrienko, and Yu. A. Zolotov, “Silver triangular nanoplates as a spectrophotometric reagent for the determination of mercury(II),” J. Anal. Chem. 72, 1203 (2017).

    Article  CAS  Google Scholar 

  41. L. K. Svetlov and T. N. Kutekhov, Methods of Analysis of Wastewater of Chemical Industries in the USSR and Abroad (NIITEKhIM, Moscow, 1975), p. 7 [in Russian].

  42. M. Nidya, M. Umadevi, and B. J. M. Rajkumar, “Structural, morphological and optical studies of l-cysteine modified silver nanoparticles and its application as a probe for the selective colorimetric detection of Hg2+,” Spectrochim. Acta, Part A 133, 265 (2014).

    Article  CAS  Google Scholar 

  43. K. Farhadi, M. Forough, R. Molaei, et al., “Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles,” Sens. Actuators, B 161, 880 (2012).

    Article  CAS  Google Scholar 

  44. A. Apilux, W. Siangproh, N. Praphairaksit, and O. Chailapakul, “Simple and rapid colorimetric detection of Hg(II) by a paper-based device using silver nanoplates,” Talanta 97, 388 (2012).

    Article  CAS  Google Scholar 

  45. P. Jarujamrus, M. Amatatongchai, A. Thima, et al., “Selective colorimetric sensors based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction for a simple and rapid determination of mercury,” Spectrochim. Acta, Part A 142, 86 (2015).

    Article  CAS  Google Scholar 

  46. J.-L. Chen, P.-C. Yang, T. Wu, and Y.-W. Lin, “Determination of mercury (II) ions based on silver-nanoparticles-assisted growth of gold nanostructures: UV–Vis and surface enhanced Raman scattering approaches,” Spectrochim. Acta, Part A 199, 301 (2018).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 18-73-10001. Separate studies were performed using equipment purchased with funds from the Moscow University Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Furletov.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furletov, A.A., Apyari, V.V., Garshev, A.V. et al. NEW NANOCOMPOSITE MATERIAL BASED ON POLYURETHANE FOAM MODIFIED WITH SILVER TRIANGULAR NANOPLATES AS A SOLID-PHASE ANALYTICAL REAGENT FOR DETERMINATION OF MERCURY(II). Nanotechnol Russia 14, 91–97 (2019). https://doi.org/10.1134/S199507801902006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199507801902006X

Navigation