Skip to main content
Log in

DETERMINATION OF THE STRUCTURE OF CARBON PARTICLES FORMED WHEN FORMING A POLYMER FILM IN A PLASMA CHEMICAL REACTOR

  • NANOSTRUCTURES, NANOTUBES
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract—We study the formation mechanism of carbon nanoparticles with simultaneous formation of a polystyrene film in a AC barrier corona discharge at atmospheric pressure. The importance of the research stems from the need to control the allotropic form of carbon nanoparticles, which affects the physical and technical characteristics of polymer films obtained by this method. It is shown that nucleation of polycrystalline onion-like carbon nanoparticle agglomerates is the basis for graphene flake formation in the corona sheath. Graphene flakes form from these nucleation sites in gas discharge streamers owing to the destruction of monomer molecules remaining in the agglomerates of nucleation sites. It was revealed that the allotropic form of such particles is determined not only by the energy—in this case the barrier corona discharge—but also by the ratio of the duration of its exposure to the characteristic destruction and formation times of covalent bonds participating in the particle process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Rakesh Kumar, Polymer-Matrix Composites(Types, Applications, and Performance) (Nova Science, New York, 2014).

    Google Scholar 

  2. Farzana Hussain and Mehdi Hojjati, “Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview,” J. Compos. Mater. 40, 1511 (2006).

    Article  CAS  Google Scholar 

  3. S. Zhandarov, E. Mader, Ch. Scheffler, et al., “Investigation of interfacial strength parameters in polymer matrix composites: compatibility and reproducibility,” Adv. Ind. Eng. Polym. Res., No. 1, 82 (2018).

    Article  Google Scholar 

  4. V. V. Chesnokov, A. S. Chichkan’, and V. N. Parmon, “Nanoporous ceramic membranes modified by carbon nanotubes used to separate gaseous mixtures,” Nanotechnol. Russ. 12, 165 (2017).

    Article  CAS  Google Scholar 

  5. I. A. Mansurova, O. Yu. Isupova, A. A. Burkov, A. A. Alalykin, S. V. Kondrashov, I. B. Shilov, and E. Yu. Kraeva, “Functionalization of 1D carbon nanostructures by components of curing system and their influence on the properties of the vulcanizates,” Nanotechnol. Russ. 11, 603 (2016).

    Article  CAS  Google Scholar 

  6. M. Y. Lone, A. Kumar, S. Husain, et al., “Growth of carbon nanotubes by PECVD and its applications: a review,” Curr. Nanosci. 13, 536 (2017).

    Article  CAS  Google Scholar 

  7. N. Arora and N. N. Sharma, “Arc discharge synthesis of carbon nanotubes: comprehensive review,” Diamond Relat. Mater. 50, 135 (2014).

    Article  CAS  Google Scholar 

  8. M. Moutab Sahihazar, M. Nouri, M. Rahmani, et al., “Fabrication of carbon nanoparticle strand under pulsed arc discharge,” Plasmonics 13, 2377 (2018).

    Article  CAS  Google Scholar 

  9. V. A. Ryzhkov, “Mechanism of carbon nanotube growth in arc-discharge,” Carbon—Sci. Tech., No. 1, 2 (2008).

  10. Muhammad Sufi Roslan, Misbahul Muneer Abd Rahma, et al., “Fullerene-to-MWCNT structural evolution synthesized by arc discharge plasma,” J. Carbon Res., No. 4, 1 (2018).

  11. E. A. Bogoslov, M. P. Danilaev, Yu. E. Pol’skii, et al., “Formation of polystyrene film in gas discharge plasma at atmospheric pressure,” Fiz. Khim. Obrab. Mater., No. 2, 23 (2016).

  12. G. Raniszewski, S. Wiak, L. Pietrzak, et al., “Influence of plasma jet temperature profiles in arc discharge methods of carbon nanotubes synthesis,” Nanomaterials (Basel) 7 (3) (2017). https://doi.org/10.3390/nano7030050

    Article  Google Scholar 

  13. O. Y. Bogomolova, I. R. Biktagirova, M. P. Danilaev, et al., “Effect of adhesion between submicron filler particles and a polymeric matrix on the structure and mechanical properties of epoxy-resin-based compositions,” Mech. Compos. Mater. 53, 117 (2017).

    Article  CAS  Google Scholar 

  14. R. Ghosh Chaudhuri and S. Paria, “Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications,” Chem. Rev. 112, 2373 (2012).

    Article  CAS  Google Scholar 

  15. Q.-Y. Chen, J. Gao, K. Dai, et al., “Nonlinear current-voltage characteristics of conductive polyethylene composites with carbon black filled pet microfibrils,” Chin. J. Polym. Sci. 31, 211 (2013).

    Article  CAS  Google Scholar 

  16. G. Scordo, V. Bertana, L. Scaltrito, et al., “A novel highly electrically conductive composite resin for stereolithography,” Mater. Today Commun. 19, 12 (2019).

    Article  CAS  Google Scholar 

  17. N. Sano, H. Wang, I. Alexandrou, et al., “Properties of carbon onions produced by an arc discharge in water,” J. Appl. Phys. 92, 2783 (2002).

    Article  CAS  Google Scholar 

  18. R. Hu, M. A. Ciolan, X. Wang, et al., “Copper induced hollow carbon nanospheres by arc discharge method: controlled synthesis and formation mechanism,” Nanotechnology 27, 1 (2016).

    Google Scholar 

  19. P. V. Borisoglebskii, L. F. Dmokhovskaya, V. P. Larionov, et al., High Voltage Technique (Gosenergoizdat, Moscow, 1963) [in Russian].

    Google Scholar 

  20. G. N. Aleksandrov, V. V. Borisov, and G. S. Kaplan, Theory of Electrical Apparatus (SPbGTU, St. Petersburg, 2000) [in Russian].

  21. Graphene—Synthesis, Characterization, Properties, and Applications,  Ed. by Jian Ru Gong (InTech Janeza Trdine, Croatia, 2011).

    Google Scholar 

  22. M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise (Dover, New York, 2009; Regulyar. Khaot. Dinamika, Izhevsk, 2005).

  23. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982; Inst. Komp. Issled., Moscow, 2002).

  24. V. V. Afanas’ev, M. P. Danilaev, and Yu. E. Pol’skii, “Physical fractals, structures, modes,” Nelin. Mir, No. 2, 110 (2008).

    Google Scholar 

  25. M. Szerencsi and G. Radnoczi, “The mechanism of growth and decay of carbon nano-onions formed by ordering of amorphous particles,” Vacuum 84, 197 (2010).

    Article  Google Scholar 

  26. J. F. Peter, “Harris transmission electron microscopy of carbon: a brief history,” J. Carbon Res., No. 4, 1 (2018).

  27. K. Bogdanov, F. Fedorov, V. Osipov, et al., “Annealing-induced structural changes of carbon onions: high-resolution transmission electron microscopy and Raman studies,” Carbon 73, 78 (2014).

    Article  CAS  Google Scholar 

  28. U. Müller, Symmetry Relationships between Crystal Structures. Applications of Crystallographic Group Theory in Crystal Chemistry (Oxford Univ. Press, UK, 2013).

    Book  Google Scholar 

  29. C. Meyer Jannik, A. K. Geim, M. I. Katsnelson, et al., “The structure of suspended grapheme sheets,” Nature (London, U.K.) 446 (7131), 60 (2007).

    Article  CAS  Google Scholar 

  30. V. E. Cosslett, “Recent progress in high voltage electron microscopy,” in Modern Diffraction and Imaging Techniques in Materials Science, Ed. by S. Amelinckx (North Holland, Amsterdam, 1970), p. 341.

    Google Scholar 

  31. M. P. Danilaev, E. M. Zueva, E. A. Bogoslov, M. S. Pudovkin, and Yu. E. Pol’skii, “Formation mechanism of argon clathrates with carbon dendrites,” Tech. Phys. 63, 857 (2018).

    Article  CAS  Google Scholar 

  32. S. B. Afanas’ev, D. S. Lavrenyuk, I. N. Petrushenko, and Yu. K. Stishkov, “Peculiarities of the corona discharge in air,” Tech. Phys. 53, 848 (2008).

    Article  Google Scholar 

  33. D. Kozak, E. Shibata, A. Iizuka, and T. Nakamura, “Growth of carbon dendrites on cathode above liquid ethanol using surface plasma,” Carbon 70, 87 (2014).

    Article  CAS  Google Scholar 

  34. T. S. Kol’tsova, T. V. Larionova, N. N. Shusharina, and O. V. Tolochko, Tech. Phys. 60, 1214 (2015).

    Article  Google Scholar 

  35. K. I. Almazova, A. N. Belonogov, V. V. Borovkov, E. V. Gorelov, I. V. Morozov, A. A. Tren’kin, and S. Yu. Kharitonov, “Investigation of spark discharge dynamics in an air-filled point-plane gap by shadow photography,” Tech. Phys. 64, 61 (2019).

    Article  CAS  Google Scholar 

  36. K. I. Almazova, A. N. Belonogov, V. V. Borovkov, E. V. Gorelov, I. V. Morozov, A. A. Tren’kin, and S. Yu. Kharitonov, “Microstructure of a spark discharge in air in a point–plane gap,” Tech. Phys. 63, 801 (2018).

    Article  CAS  Google Scholar 

  37. Yu. K. Stishkov, A. V. Samusenko, and I. A. Ashikhmin, “Corona discharge and electrogasdynamic flows in the air,” Phys. Usp. 61, 1213 (2018).

    Article  CAS  Google Scholar 

  38. H. Haken, Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems and Devices (Springer, Heidelberg, 1983).

    Google Scholar 

  39. W. Ebeling, Origin of Structures at Irreversible Processes: Introduction in the Theory of Dissipative Structures (Rostock, 1977).

  40. I. Prigogine, The End of Certainty: Time, Chaos, and the New Laws of Nature (The Free Press, New York, 1997).

    Google Scholar 

  41. O. G. Kiselev, A. B. Berezin, F. E. Maiers, et al., “Methods of fullerene extraction,” RF Patent No. 2272784, Byull. Izobret., No. 9 (2006), p. 37.

  42. V. S. Pavlovich and E. M. Shpilevskii, “Absorption and fluorescence spectra of C60 fullerene concentrated solutions in hexane and polystyrene at 77–300 K,” J. Appl. Spectrosc. 77, 335 (2010).

    Article  CAS  Google Scholar 

  43. S. Leach, M. Vervloet, A. Despres, et al., “Electronic spectra and transitions of the fullerene C60,” Chem. Phys. 160, 451 (1992).

    Article  CAS  Google Scholar 

  44. A. Cohen, J. Lundell, and R. B. Gerber, “First compounds with argon-carbon and argon-silicon chemical bonds,” J. Chem. Phys. 119, 6415 (2003).

    Article  CAS  Google Scholar 

  45. M. A. Liberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New Jersey, 2005).

    Book  Google Scholar 

  46. Laser Reference Book, Ed. by A. M. Prokhorov (Sov. Radio, Moscow, 1978), Vol. 1 [in Russian].

    Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 18-48-160024) and partially (spectroscopy) by subsidies allocated to Kazan Federal University under the state task for scientific activity (3.1156.2017/4.6, 3.5835.2017/6.7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Danilaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogoslov, E.A., Danilaev, M.P., Drobyshev, S.V. et al. DETERMINATION OF THE STRUCTURE OF CARBON PARTICLES FORMED WHEN FORMING A POLYMER FILM IN A PLASMA CHEMICAL REACTOR. Nanotechnol Russia 14, 98–103 (2019). https://doi.org/10.1134/S1995078019020022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019020022

Navigation