Skip to main content
Log in

On the Nature of Defects in Mn1 –xFexGe Compounds Synthesized under High Pressure

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The mesostructure of Mn1 – xFex Ge transition-metal monogermanides is studied by small-angle neutron scattering (SANS) and ultra-SANS in a wide concentration range of x = 0.0–1.0.It is shown that the main contribution to the scattering intensity for all concentrations x is made by scattering at crystallites with sharp boundaries and sizes of 1–10 μm, which is described by the squared Lorentzian function. An additional contribution to the scattering intensity as a result of scattering at an ensemble of defects is found as well, which is characteristic of manganese-rich samples. This contribution is well fitted by the power function Q–n with the exponent n = 3. The complementary scattering typical of iron-rich samples is described by an exponential function and also seems to be a part of scattering at sharp-boundary crystallites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. N. Hansen and D. Kuhlman-Wilsdorf, Mater. Sci. Eng. 81, 38 (1986).

    Article  Google Scholar 

  2. O. B. Naimark, Fiz. Mezomekh. 6 (4), 45 (2003).

    Google Scholar 

  3. A. I. Olemskoi and A. Ya. Flat, Phys. Usp. 36, 1005 (1993).

    Article  Google Scholar 

  4. A. I. Olemskoi and I. A. Sklyar, Sov. Phys. Usp. 35, 455 (1992).

    Article  Google Scholar 

  5. E. G. Iashina, E. V. Velichko, M. V. Filatov, W. G. Bouwman, C. P. Duif, A. Brulet, and S. V. Grigoriev, Phys. Rev. E 96, 1 (2017).

    Article  Google Scholar 

  6. A. Munoz, M. A. Monge, B. Savoini, R. Pareja, and A. Radulescu, Int. J. Refract. Met. Hard. Mater. 61, 173 (2016).

    Article  CAS  Google Scholar 

  7. J. Bahadur, Y. B. Melnichenko, L. He, C. I. Contescu, N. C. Gallego, and J. R. Carmichael, Carbon 95, 535 (2015).

    Article  CAS  Google Scholar 

  8. R. Yang, Sh. He, O. Hu, M. Sun, D. Hu, and J. Yi, Fuel 197, 91 (2017).

    Article  CAS  Google Scholar 

  9. E. G. Iashina and S. V. Grigoriev, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 11, 897 (2017).

    Article  CAS  Google Scholar 

  10. I. A. Safiulina, E. V. Altynbaev, E. G. Iashina, A. Heinemann, L. N. Fomicheva, A. V. Tsvyashchenko, and S. V. Grigoriev, Phys. Solid State 60 (4), 751 (2018).

    Article  CAS  Google Scholar 

  11. E. Altynbaev, S.-A. Siegfried, V. Dyadkin, E. Moskvin, D. Menzel, A. Heinemann, C. Dewhurst, L. Fomicheva, A. Tsvyashchenko, and S. Grigoriev, Phys. Rev. B 90, 174 420 (2014).

    Article  Google Scholar 

  12. E. V. Altynbaev, A. S. Sukhanov, S.-A. Siegfried, V. A. Dyadkin, E. V. Moskvin, D. Menzel, A. Heinemann, A. Schrayer, L. N. Fomicheva, A. V. Tsvyashchenko, and S. V. Grigoriev, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 10, 777 (2016).

    Article  CAS  Google Scholar 

  13. N. Martin, M. Deutsch, F. Bert, D. Andreica, A. Amato, P. Boni, R. de Renzi, U. K. Rossler, P. Bonville, L. N. Fomicheva, A. V. Tsvyashchenko, and I. Mirebeau, Phys. Rev. B 93, 174 405 (2016).

    Article  Google Scholar 

  14. E. Altynbaev, S.-A. Siegfried, E. Moskvin, D. Menzel, C. Dewhurst, A. Heinemann, A. Feoktystov, L. Fomicheva, A. Tsvyashchenko, and S. Grigoriev, Phys. Rev. B 94, 174 403 (2016).

    Article  Google Scholar 

  15. B. Lebech, J. Bernhard, and T. Freltoft, J. Phys.: Condens. Matter 1, 6105 (1989).

    CAS  Google Scholar 

  16. P. Bak and M. H. Jensen, J. Phys. C 13, L881 (1980).

    Article  CAS  Google Scholar 

  17. S. V. Grigoriev, N. M. Potapova, S.-A. Siegfried, V. A. Dyadkin, E. V. Moskvin, V. Dmitriev, D. Menzel, C. D. Dewhurst, D. Chernyshov, R. A. Sadykov, L. N. Fomicheva, and A. V. Tsvyashchenko, Phys. Rev. Lett. 110, 207 201 (2013).

    Article  Google Scholar 

  18. S. V. Grigoriev, S. V. Maleyev, A. I. Okorokov, Y. O. Chetverikov, P. Boni, R. Georgii, and K. Pranzas, Phys. Rev. B 74 (21), 214 414 (2006).

    Article  Google Scholar 

  19. T. Koretsune, N. Nagaosa, and R. Arita, Sci. Rep. 5, 13 302 (2015).

    Article  Google Scholar 

  20. J. Gayles, F. Freimuth, T. Schena, G. Lani, P. Mavropoulos, R. Duine, S. Blugel, J. Sinova, and Y. Mokrousov, Phys. Rev. Lett. 115, 036 602 (2015).

    Article  Google Scholar 

  21. L. G. Khvostantsev, V. N. Slesarev, and V. V. Brazhkin, High Press. Res. 24, 371 (2004).

    Article  CAS  Google Scholar 

  22. E. Arras, D. Caliste, T. Deutsch, F. Lancon, and P. Pochet, Phys. Rev. B 83 (17), 174 103 (2011).

    Article  Google Scholar 

  23. E. I. Tonkov, High Pressure Phase Transformations, A Handbook (CRC, Boca Raton, FL, 1992).

    Google Scholar 

  24. Y. H. Zhuang, X. Chen, J. L. Yan, R. F. Li, C. H. Ma, J. Alloys Compd. 465 (1), 216 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to B. Wu and A. Heinemann, responsible for the KWS-3 and SANS-1 neutron stations, for help in taking the measurements.

Funding

This work was supported by the Russian Science Foundation, project no. 17-12-01050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Iashina.

Additional information

Translated by O. Maslova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iashina, E.G., Altynbaev, E.V., Fomicheva, L.N. et al. On the Nature of Defects in Mn1 –xFexGe Compounds Synthesized under High Pressure. J. Surf. Investig. 14, 429–433 (2020). https://doi.org/10.1134/S1027451020030209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020030209

Keywords:

Navigation